Контакты

Паропроницаемость в чем измеряется. Сопротивление паропроницанию материалов и тонких слоев пароизоляции. Правила расположения пароизолирующих слоев

Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.

Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка?, ?
Металлы?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

В последнее время все большее применение в строительстве находят разнообразные системы наружного утепления: "мокрого" типа; вентилируемые фасады; модифированная колодезная кладка и т.д. Всех их объединяет то, что это многослойные ограждающие конструкции. А для многослойных конструкций вопросы паропроницаемости слоев, переноса влаги, количественной оценки выпадающего конденсата являются вопросами первостепенной важности.

Как показывает практика, к сожалению, что этим вопросам как проектировщики, так и архитекторы не уделяют должного внимания.

Мы уже отмечали, что российский строительный рынок перенасыщен импортными материалами. Да, безусловно, законы строительной физики одни и те же, и действуют одинаково, например, как в России, так и в Германии, но методики подхода и нормативная база, очень часто, весьма различны.

Поясним это на примере паропроницаемости. DIN 52615 вводит понятие паропроницаемости через коэффициент паропроницаемости μ и воздушный эквивалентный промежуток s d .

Если сравнить паропроницаемость слоя воздуха толщиной 1 м с паропроницаемостью слоя материала той же толщины, то получим коэффициент паропроницаемости

μ DIN (безразмерный) = паропроницаемость воздуха/паропроницаемость материала

Сравните, понятие коэффициента паропроницаемости μ СНиП в России вводится через СНиП II-3-79* "Строительная теплотехника", имеет размерность мг / (м * ч * Па) и характеризует то количество водяного пара в мг, которое проходит через один метр толщины конкретного материала за один час при разности давлений в 1 Па.

Каждый слой материала в конструкции имеет свою конечную толщину d , м. Очевидно, что количество водяного пара, прошедшего через этот слой будет тем меньше, чем больше его толщина. Если перемножить μ DIN и d , то и получим, так называемый, воздушный эквивалентный промежуток или диффузно-эквивалентную толщину слоя воздуха s d

s d = μ DIN * d [м]

Таким образом, по DIN 52615, s d характеризует толщину слоя воздуха [м], которая обладает равной паропроницаемостью со слоем конкретного материала толщиной d [м] и коэффициентом паропроницаемости μ DIN . Сопротивление паропроницанию 1/Δ определяется как

1/Δ= μ DIN * d / δ в [(м² * ч * Па) / мг],

где δ в - коэффициент паропроницаемости воздуха.

СНиП II-3-79* "Строительная теплотехника" определяет сопротивление паропроницанию R П как

R П = δ / μ СНиП [(м² * ч * Па) / мг],

где δ - толщина слоя, м.

Сравните, по DIN и СНиП сопротивления паропроницаемости, соответственно, 1/Δ и R П имеют одну и ту же размерность.

Мы не сомневаемся, что нашему читателю уже понятно, что вопрос увязки количественных показателей коэффициента паропроницаемости по DIN и СНиП лежит в определении паропроницаемости воздуха δ в .

По DIN 52615 паропроницаемость воздуха определяется как

δ в =0,083 / (R 0 * T) * (p 0 / P) * (T / 273) 1,81 ,

где R 0 - газовая постоянная водяного пара, равная 462 Н*м/(кг*К);

T - температура внутри помещения, К;

p 0 - среднее давление воздуха внутри помещения, гПа;

P - атмосферное давление при нормальном состоянии, равное 1013,25 гПа.

Не вдаваясь глубоко в теорию, отметим, что величина δ в в незначительной степени зависит от температуры и может с достаточной точностью при практических расчетах рассматриваться как константа, равная 0,625 мг/(м*ч*Па) .

Тогда, в том случае, если известна паропроницаемость μ DIN легко перейти к μ СНиП , т.е. μ СНиП = 0,625/ μ DIN

Выше мы уже отмечали важность вопроса паропроницаемости для многослойных конструкций. Не менее важным, с точки зрения строительной физики, является вопрос последовательности слоев, в частности, положение утеплителя.

Если рассматривать вероятность распределения температур t , давления насыщенного пара Рн и давления ненасыщенного (реального) пара Pp через толщу ограждающей конструкции, то с точки зрения процесса диффузии водяного пара наиболее предпочтительна такая последовательность расположения слоев, при которой сопротивление теплопередаче уменьшается, а сопротивление паропроницанию возрастает снаружи внутрь.

Нарушение этого условия, даже без расчета, свидетельствует о возможности выпадения конденсата в сечении ограждающей конструкции (рис. П1).

Рис. П1

Отметим, что расположение слоев из различных материалов не влияет на величину общего термического сопротивления, однако, диффузия водяного пара, возможность и место выпадения конденсата предопределяют расположение утеплителя на внешней поверхности несущей стены.

Расчет сопротивления паропроницаемости и проверку возможности выпадения конденсата необходимо вести по СНиП II-3-79* "Строительная теплотехника".

В последнее время пришлось столкнуться с тем, что нашим проектировщикам предоставляются расчеты, выполненные по зарубежным компьютерным методикам. Выскажем свою точку зрения.

· Такие расчеты, очевидно, не имеют юридической силы.

· Методики рассчитаны на более высокие зимние температуры. Так, немецкая методика "Bautherm" уже не работает при температурах ниже -20 °С.

· Многие важные характеристики в качестве начальных условий не увязаны с нашей нормативной базой. Так, коэффициент теплопроводности для утеплителей дается в сухом состоянии, а по СНиП II-3-79* "Строительная теплотехника" должен браться в условиях сорбционной влажности для зон эксплуатации А и Б.

· Баланс набора и отдачи влаги рассчитывается для совершенно других климатических условий.

Очевидно, что количество зимних месяцев с отрицательными температурами для Германии и, скажем, для Сибири совершенно не совпадают.

Паропроницаемость материала выражена в его способности пропускать водяной пар. Данное свойство противостоять проникновению пара или позволять ему проходить сквозь материал определяется уровнем коэффициента паропроницаемости, который обозначается µ. Это значение, которое звучит как «мю», выступает в качестве относительной величины сопротивления переносу пара в сравнении с характеристиками сопротивления воздуха.

Существует таблица, которая отражает способность материала к паропереносу, ее можно увидеть на рис. 1. Таким образом, значение мю для минеральной ваты равно 1, это указывает на то, что она способна пропускать водяной пар так же хорошо, как и сам воздух. Тогда как это значение для газобетона равно 10, это означает, что он справляется с проведением пара в 10 раз хуже воздуха. Если показатель мю умножить на толщину слоя, выраженную в метрах, это позволит получить равную по уровню паропроницаемости толщину воздуха Sd (м).

Из таблицы видно, что для каждой позиции показатель паропроницаемости указан при разном состоянии. Если заглянуть в СНиП, то можно увидеть расчетные данные показателя мю при отношении влаги в теле материала, приравненном к нулю.

Рисунок 1. Таблица паропроницаемости стройматериалов

По этой причине при приобретении товаров, которые предполагается использовать в процессе дачного строительства, предпочтительнее брать в расчет международные стандарты ISO, так как они определяют показатель мю в сухом состоянии, при уровне влажности не более 70% и показателе влажности более 70%.

При выборе строительных материалов, которые лягут в основу многослойной конструкции, показатель мю слоев, находящихся изнутри, должен быть ниже, в противном случае со временем внутри расположенные слои станут намокать, вследствие этого они потеряют свои теплоизоляционные качества.

При создании ограждающих конструкций нужно позаботиться об их нормальном функционировании. Для этого следует придерживаться принципа, который гласит, что уровень мю материала, который расположен в наружном слое, должен в 5 раз или больше превышать упомянутый показатель материала, находящегося во внутреннем слое.

Механизм паропроницаемости

При условиях незначительной относительной влажности частички влаги, которые содержатся в атмосфере, проникают сквозь поры строительных материалов, оказываясь там в виде молекул пара. В момент увеличения уровня относительной влажности поры слоев накапливают воду, что становится причиной намокания и капиллярного подсоса.

В момент повышения уровня влажности слоя его показатель мю увеличивается, таким образом, уровень сопротивления паропроницаемости снижается.

Показатели паропроницаемости неувлажненных материалов применимы в условиях внутренних конструкций построек, которые имеют отопление. А вот уровни паропроницаемости увлажненных материалов применимы для любых конструкций построек, которые не отапливаются.

Уровни паропроницаемости, которые являются частью наших норм, не во всех случаях эквивалентны показателям, которые принадлежат к международным стандартам. Так, в отечественных СНиП уровень мю керамзито- и шлакобетона почти не отличается, тогда как по международным стандартам данные отличаются между собой в 5 раз. Уровни паропроницаемости ГКЛ и шлакобетона в отечественных нормах практически одинаковы, а в международных стандартах данные отличаются в 3 раза.

Существуют различные способы определения уровня паропроницаемости, что касается мембран, то можно выделить следующие способы:

  1. Американский тест с установленной вертикально чашей.
  2. Американский тест с перевернутой чашей.
  3. Японский тест с вертикальной чашей.
  4. Японский тест с перевернутой чашей и влагопоглотителем.
  5. Американский тест с вертикальной чашей.

В японском тесте используется сухой влагопоглотитель, который расположен под тестируемым материалом. Во всех тестах используется уплотнительный элемент.

Паропроницаемость материалов таблица – это строительная норма отечественных и, конечно же, международных стандартов. Вообще, паропроницаемость – это определенная способность матерчатых слоев активно пропускать водяные пары за счет разных результатов давления при однородном атмосферном показателе с двух сторон элемента.

Рассматриваемая способность пропускать, а также задерживать водяные пары характеризуется специальными величинами, носящими название коэффициент сопротивляемости и паропроницаемости.

В момент лучше акцентировать собственное внимание на международные установленные стандарты ISO. Именно они определяют качественную паропроницаемость сухих и влажных элементов.

Большое количество людей являются приверженцами того, что дышащие – это хороший признак. Однако это не так. Дышащие элементы – это те сооружения, которые пропускают как воздух, так и пары. Повышенной паропроницаемостью обладают керамзиты, пенобетоны и деревья. В некоторых случаях кирпичи тоже имеют данные показатели.

Если стена наделена высокой паропроницаемостью, то это не значит, что дышать становится легко. В помещении набирается большое количество влаги, соответственно, появляется низкая стойкость к морозам. Выходя через стены, пары превращаются в обычную воду.

Большинство производителей при расчетах рассматриваемого показателя не учитывают важные факторы, то есть хитрят. По их словам, каждый материал тщательно просушен. Отсыревшие увеличивают тепловую проводимость в пять раз, следовательно, в квартире или ином помещении будет достаточно холодно.

Наиболее страшным моментом является падение ночных температурных режимов, ведущих к смещению точки росы в настенных проемах и дальнейшему замерзанию конденсата. Впоследствии образовавшиеся замерзшие воды начинают активно разрушать поверхности.

Показатели

Паропроницаемость материалов таблица указывает на существующие показатели:

  1. , являющаяся энергетическим видом переноса теплоты от сильно нагретых частиц к менее нагретым. Таким образом, осуществляется и появляется равновесие в температурных режимах. При высокой квартирной тепловой проводимости жить можно максимально комфортабельно;
  2. Тепловая емкость рассчитывает количество подаваемого и содержащегося тепла. Его в обязательном порядке необходимо подводить к вещественному объему. Именно так рассматривается температурное изменение;
  3. Тепловое усвоение является ограждающим конструкционным выравниванием в температурных колебаниях, то есть степень поглощения настенными поверхностями влаги;
  4. Тепловая устойчивость — это свойство, ограждающее конструкции от резких тепловых колебательных потоков. Абсолютно вся полноценная комфортабельность в помещении зависит от общих тепловых условий. Тепловая устойчивость и емкость может быть активной в тех случаях, когда слои выполняются из материалов с повышенным тепловым усвоением. Устойчивость обеспечивает нормализованное состояние конструкциям.

Механизмы паропроницаемости

Влага, располагаемая в атмосфере, при пониженном уровне относительной влажности активно транспортируется через имеющиеся поры в строительных компонентах. Они приобретают внешний вид, подобный отдельным молекулам водяного пара.

В тех случаях, когда влажность начинает повышаться, поры в материалах заполняются жидкостями, направляя механизмы работы для скачивания в капиллярные подсосы. Паропроницаемость начинает увеличиваться, понижая коэффициенты сопротивляемости, при повышении в строительном материале влажности.

Для внутренних сооружений в уже оттапливаемых зданиях применяются показатели паропроницаемости сухого типа. В местах, где отопление переменное или же временное используются влажные виды строительных материалов, предназначенные для наружного варианта конструкций.

Паропроницаемость материалов, таблица помогает эффективно сравнить разнообразные типы паропроницаемости.

Оборудование

Для того чтобы корректно определить показатели паропроницаемости, специалисты используют специализированное исследовательское оборудование:

  1. Стеклянные чашки или сосуды для исследований;
  2. Уникальные средства, необходимые для измерительных толщинных процессов с высоким уровнем точности;
  3. Весы аналитического типа с погрешностью взвешивания.

В последнее время все большее применение в строительстве находят разнообразные системы наружного утепления: "мокрого" типа; вентилируемые фасады; модифированная колодезная кладка и т.д. Всех их объединяет то, что это многослойные ограждающие конструкции. А для многослойных конструкций вопросы паропроницаемости слоев, переноса влаги, количественной оценки выпадающего конденсата являются вопросами первостепенной важности.

Как показывает практика, к сожалению, что этим вопросам как проектировщики, так и архитекторы не уделяют должного внимания.

Мы уже отмечали, что российский строительный рынок перенасыщен импортными материалами. Да, безусловно, законы строительной физики одни и те же, и действуют одинаково, например, как в России, так и в Германии, но методики подхода и нормативная база, очень часто, весьма различны.

Поясним это на примере паропроницаемости. DIN 52615 вводит понятие паропроницаемости через коэффициент паропроницаемости μ и воздушный эквивалентный промежуток s d .

Если сравнить паропроницаемость слоя воздуха толщиной 1 м с паропроницаемостью слоя материала той же толщины, то получим коэффициент паропроницаемости

μ DIN (безразмерный) = паропроницаемость воздуха/паропроницаемость материала

Сравните, понятие коэффициента паропроницаемости μ СНиП в России вводится через СНиП II-3-79* "Строительная теплотехника", имеет размерность мг / (м * ч * Па) и характеризует то количество водяного пара в мг, которое проходит через один метр толщины конкретного материала за один час при разности давлений в 1 Па.

Каждый слой материала в конструкции имеет свою конечную толщину d , м. Очевидно, что количество водяного пара, прошедшего через этот слой будет тем меньше, чем больше его толщина. Если перемножить μ DIN и d , то и получим, так называемый, воздушный эквивалентный промежуток или диффузно-эквивалентную толщину слоя воздуха s d

s d = μ DIN * d [м]

Таким образом, по DIN 52615, s d характеризует толщину слоя воздуха [м], которая обладает равной паропроницаемостью со слоем конкретного материала толщиной d [м] и коэффициентом паропроницаемости μ DIN . Сопротивление паропроницанию 1/Δ определяется как

1/Δ= μ DIN * d / δ в [(м² * ч * Па) / мг],

где δ в - коэффициент паропроницаемости воздуха.

СНиП II-3-79* "Строительная теплотехника" определяет сопротивление паропроницанию R П как

R П = δ / μ СНиП [(м² * ч * Па) / мг],

где δ - толщина слоя, м.

Сравните, по DIN и СНиП сопротивления паропроницаемости, соответственно, 1/Δ и R П имеют одну и ту же размерность.

Мы не сомневаемся, что нашему читателю уже понятно, что вопрос увязки количественных показателей коэффициента паропроницаемости по DIN и СНиП лежит в определении паропроницаемости воздуха δ в .

По DIN 52615 паропроницаемость воздуха определяется как

δ в =0,083 / (R 0 * T) * (p 0 / P) * (T / 273) 1,81 ,

где R 0 - газовая постоянная водяного пара, равная 462 Н*м/(кг*К);

T - температура внутри помещения, К;

p 0 - среднее давление воздуха внутри помещения, гПа;

P - атмосферное давление при нормальном состоянии, равное 1013,25 гПа.

Не вдаваясь глубоко в теорию, отметим, что величина δ в в незначительной степени зависит от температуры и может с достаточной точностью при практических расчетах рассматриваться как константа, равная 0,625 мг/(м*ч*Па) .

Тогда, в том случае, если известна паропроницаемость μ DIN легко перейти к μ СНиП , т.е. μ СНиП = 0,625/ μ DIN

Выше мы уже отмечали важность вопроса паропроницаемости для многослойных конструкций. Не менее важным, с точки зрения строительной физики, является вопрос последовательности слоев, в частности, положение утеплителя.

Если рассматривать вероятность распределения температур t , давления насыщенного пара Рн и давления ненасыщенного (реального) пара Pp через толщу ограждающей конструкции, то с точки зрения процесса диффузии водяного пара наиболее предпочтительна такая последовательность расположения слоев, при которой сопротивление теплопередаче уменьшается, а сопротивление паропроницанию возрастает снаружи внутрь.

Нарушение этого условия, даже без расчета, свидетельствует о возможности выпадения конденсата в сечении ограждающей конструкции (рис. П1).

Рис. П1

Отметим, что расположение слоев из различных материалов не влияет на величину общего термического сопротивления, однако, диффузия водяного пара, возможность и место выпадения конденсата предопределяют расположение утеплителя на внешней поверхности несущей стены.

Расчет сопротивления паропроницаемости и проверку возможности выпадения конденсата необходимо вести по СНиП II-3-79* "Строительная теплотехника".

В последнее время пришлось столкнуться с тем, что нашим проектировщикам предоставляются расчеты, выполненные по зарубежным компьютерным методикам. Выскажем свою точку зрения.

· Такие расчеты, очевидно, не имеют юридической силы.

· Методики рассчитаны на более высокие зимние температуры. Так, немецкая методика "Bautherm" уже не работает при температурах ниже -20 °С.

· Многие важные характеристики в качестве начальных условий не увязаны с нашей нормативной базой. Так, коэффициент теплопроводности для утеплителей дается в сухом состоянии, а по СНиП II-3-79* "Строительная теплотехника" должен браться в условиях сорбционной влажности для зон эксплуатации А и Б.

· Баланс набора и отдачи влаги рассчитывается для совершенно других климатических условий.

Очевидно, что количество зимних месяцев с отрицательными температурами для Германии и, скажем, для Сибири совершенно не совпадают.



Понравилась статья? Поделитесь ей