Контакты

Вакуумное напыление алюминия. Технологический процесс вакуумной металлизации. Другие производители вакуумных установок

Модификация различных конструкций, деталей и функциональных элементов зачастую выполняется путем полного изменения структуры материалов. Для этого задействуются средства глубокой термической, плазменной и химической обработки. Но существует и широкий сегмент методов изменения эксплуатационных свойств за счет внешних покрытий. К таким способам относится вакуумная металлизация, благодаря которой можно улучшать декоративные, токопроводящие, отражающие и другие характеристики материалов.

Общие сведения о технологии

Суть метода заключается в напылении частиц металла на рабочую поверхность. Процесс формирования нового покрытия происходит за счет испарения донорских металлов в условиях вакуума. Технологический цикл подразумевает выполнение нескольких стадий структурного изменения целевой основы и элементов покрытия. В частности, выделяются процессы испарения, конденсации, абсорбции и кристаллизации. Ключевой процедурой можно назвать взаимодействие металлических частиц с поверхностью в условиях особой газовой среды. На этом этапе технология вакуумной металлизации обеспечивает процессы диффузии и присоединения частиц к структуре обрабатываемой детали. На выходе в зависимости от режимов напыления, характеристик покрытия и типа заготовки можно получать самые разные эффекты. Современные технические средства позволяют не просто улучшать отдельные эксплуатационные качества изделия, но и с высокой точностью дифференцировать свойства поверхности на отдельных участках.

Применяемое оборудование

Различают три основные группы машин, используемых для данной технологии. Это оборудование непрерывного, полунепрерывного и периодического действия. Соответственно, они различаются по признаку общей организации обрабатывающего процесса. Агрегаты с непрерывным действием часто используют на серийных производствах, где требуется поточная вакуумная металлизация. Оборудование этого типа может быть одно- и многокамерным. В первом случае агрегаты ориентируются на выполнение непосредственно металлизации. Многокамерные же модели предусматривают и возможность реализации дополнительных процедур - первичной подготовки изделия, контроля, термической обработки и т.д. Такой подход позволяет оптимизировать процесс изготовления. Машины для периодической и полунепрерывной металлизации, как правило, имеют одну основную камеру. Именно в силу нерегулярности производства они используются для конкретной процедуры, а подготовительные операции и тот же контроль качества осуществляются в отдельном порядке - иногда в ручном режиме без автоматизированных линий. Теперь стоит подробнее рассмотреть, из каких узлов состоят такие агрегаты.

Устройство машин для металлизации

Помимо основной камеры, где и происходят процессы напыления, оборудование включает множество вспомогательных систем и функциональных компонентов. В первую очередь стоит выделить непосредственно источники распыляемого материала, коммуникации которых связываются с газораспределительным комплексом. Чтобы установка вакуумной металлизации могла обеспечивать нужные для конкретной задачи обработки параметры, подающие каналы напыления с регуляторами позволяют, в частности, настраивать температурный уровень, скорость направления потоков и объемы. В частности эта инфраструктура формируется натекателями, насосами, клапанами, фланцевыми элементами и прочей арматурой.

В современных установках для той же регуляции рабочих параметров используются датчики, подключенные к микропроцессорному блоку. Учитывая заданные требования и фиксируя текущие фактические значения, аппаратура без участия оператора может корректировать режимы обработки. Также для облегчения процессов эксплуатации оборудование дополняется внутрикамерными системами очистки и калибровки. Благодаря такой оснастке упрощается ремонт вакуумной металлизации машины, поскольку постоянная и своевременная чистка минимизирует риски перегрузок пневмодвигателей, манипуляторов и коммуникационных контуров. Последние и вовсе рассматриваются как расходная часть, замена которой в агрегатах непрерывного действия выполняется в регулярном порядке техобслуживания.

Целевые материалы для металлизации

Прежде всего процедуре подвергаются металлические заготовки, которые могут быть выполнены в том числе из специальных сплавов. Дополнительное покрытие требуется для обеспечения антикоррозийного слоя, повышения качества электрической проводки или же изменения декоративных свойств. В последние годы вакуумная металлизация все чаще используется и применительно к полимерным изделиям. Данный процесс имеет свою специфику, обусловленную характеристиками структуры объектов такого рода. Реже технология применяется в отношении изделий, которые имеют низкие показатели твердости. Это касается древесины и некоторых синтетических материалов.

Особенности металлизации пластиков

Напыление на поверхности пластиковых деталей также способно изменить его электрические, физические и химические свойства. Нередко металлизацию используют и как средство повышения оптических качеств подобных заготовок. Главной же проблемой при выполнении таких операций является процесс интенсивного термического испарения, который неизбежно оказывает давление на потоки частиц, напыляющих поверхность элемента. Поэтому требуются специальные режимы регуляции диффузии основного материала и расходуемой массы.

Имеет свою специфику и вакуумная металлизация пластмасс, отличающихся жесткой структурой. В данном случае будет иметь значение присутствие защитных и грунтующих лаков. Для поддержания достаточного уровня адгезии с преодолением барьеров этих пленок может потребоваться повышение энергии термического воздействия. Но здесь же вновь возникает проблема с рисками разрушения пластиковой структуры под влиянием тепловых потоков. В итоге для снятия излишнего напряжения в рабочей среде вводятся модифицирующие компоненты наподобие пластификаторов и растворителей, позволяющих удерживать форму заготовки в оптимальном состоянии независимо от температурного режима.

Особенности обработки пленочных материалов

Технологии изготовления упаковочных материалов предусматривают использование металлизации для ПЭТ-пленок. Данный процесс обеспечивает алюминирование поверхности, благодаря чему заготовка наделяется более высокой прочностью и стойкостью перед внешними воздействиями. В зависимости от параметров обработки и конечных требований к покрытию могут применяться разные способы теплоотвода. Поскольку пленка чувствительна к температуре, вводится дополнительная процедура осаждения. Как и в случае с пластиками, она позволяет регулировать термический баланс, сохраняя оптимальную для заготовки среду. Толщина пленок, которые обрабатываются по методу вакуумной рулонной металлизации, может составлять от 3 до 50 мкм. Постепенно внедряются и технологии, обеспечивающие подобные покрытия на поверхностях материалов толщиной 0,9 мкм, но по большей части это пока лишь экспериментальная практика.

Металлизация отражателей

Это тоже отдельное направление использования металлизации. Целевым объектом в данном случае выступают автомобильные фары. Их конструкция предусматривает наличие отражателей, которые со временем утрачивают свои эксплуатационные качества - тускнеют, ржавеют и, как следствие, становятся непригодными к использованию. Кроме того, даже новая фара может получить случайное повреждение, из-за чего потребуется ее ремонт и восстановление. Именно на эту задачу и ориентируется вакуумная металлизация отражателей, обеспечивающая износостойкое напыление на зеркальной поверхности. Заполнение внешней структуры металлизированными частицами с одной стороны ликвидирует мелкие дефекты, а с другой - выступает защитным покрытием, предотвращая возможные повреждения в будущем.

Организация процесса в домашних условиях

Без специального оборудования можно применить технологию поверхностного химического покрытия, но для вакуумной обработки в любом случае потребуется соответствующая камера. На первом этапе подготавливается сама заготовка - ее следует очистить, обезжирить и при необходимости выполнить шлифование. Далее объект помещается в камеру вакуумной металлизации. Своими руками можно выполнить и специальную оснастку на рельсах из профильных элементов. Это будет удобный способ загрузки и выгрузки материала, если планируется обработка в регулярном режиме. В качестве источника частиц металлизации применяются так называемые болванки - из алюминия, латуни, меди и др. После этого камера настраивается на оптимальный режим обработки и начинается процесс напыления. Готовое изделие сразу после металлизации можно покрыть вручную вспомогательными защитными покрытиями на основе лаков.

Положительные отзывы о технологии

Метод имеет множество положительных качеств, которые отмечают пользователи готовых изделий в разных областях. В частности указывается на высокие защитные свойства покрытия, которое предотвращает процессы коррозии и механического разрушения основы. Положительно отзываются и рядовые потребители продукции, которая подвергалась вакуумной металлизации с целью улучшения или изменения декоративных качеств. Специалисты же подчеркивают и экологическую безопасность технологии.

Негативные отзывы

К минусам данного метода обработки изделий относят сложность технической организации процесса и высокие требования к подготовительным мероприятиям заготовки. И это, не говоря о применении высокотехнологичного оборудования. Только с его помощью можно получить качественное напыление. Стоимость также входит в список недостатков вакуумной металлизации. Цена обработки одного элемента может составлять 5-10 тыс. руб. в зависимости от площади целевой области и толщины покрытия. Другое дело, что серийная металлизация удешевляет стоимость отдельного изделия.

В заключение

Изменение технико-физических и декоративных свойств тех или иных материалов расширяет возможности их дальнейшего применения. Развитие метода вакуумной металлизации обусловило появление специальных направлений обработки с ориентацией на конкретные эксплуатационные качества. Технологи также работают и над упрощением самого процесса напыления, что уже сегодня проявляется в виде уменьшения габаритов оборудования и сокращения процедур пост-обработки. Что касается применения методики в домашних условиях, то это наиболее проблемный способ покрытия, так как требует от исполнителя наличия специальных навыков, не говоря о технических средствах. С другой стороны, более доступные методы напыления не позволяют получать покрытия того же качества - будь то защитный слой или декоративная стилизация.

Обработка поверхностей методом вакуумного напыления металлами позволяет усилить положительные характеристики изделий из различных материалов. Металлические детали защищаются от коррозии, лучше проводят электричество, становятся более эстетичными внешне. Металлизация пластиковых изделий позволяет получить качественные и красивые детали из более легких и дешевых материалов. Это особенно актуально для автопромышленности, потому как металлизация пластиковых комплектующих позволяет значительно снизить вес автомобилей. А металлизированный мех придает шубе эксклюзивность, неповторимость и является новым трендом сезона.

В компании «Альфа-К» можно заказать вакуумное металлическое напыление для изделий из различных материалов, в том числе и меха.

Методы

Суть технологии заключается в том, что в условиях вакуума на специальном оборудовании переносятся мельчайшие металлочастицы на рабочую поверхность заготовки. В процессе формирования покрытий исходный металл испаряется, конденсируется, абсорбируется и кристаллизуется в газовой среде, создавая стойкое покрытие. В зависимости от типа заготовки, свойств металлической пленки и выбранного режима напыления получаются самые разнообразные эффекты. Напылить можно практически любой металл: алюминий, никель, хром, медь, бронза, золото, титан, пр. С учетом специфических свойств и особенностей, под каждый металл требуются различные режимы и технические приемы. Например, из-за низкой износостойкости особой технологии требует вакуумное напыление алюминия. Вот почему в нашей компании работают исключительно высококвалифицированные и опытные специалисты. Металлизация проводится разными способами.

Вакуумно-плазменное

В таких системах под неким давлением газа металлизированное покрытие создается путем сильного нагрева источника металла, вследствие чего происходит его испарение, и частицы оседают на заготовку. Камера может быть металлической, стеклянной, обязательно с системой водяного охлаждения. Для нагревания напыляемого элемента используют такие испарители:

  • проволочный либо ленточный вольфрамовый или молибденовый испаритель прямого накала;
  • электронно-радиальный, создающий нагрев с помощью электрической бомбардировки.

В соответствии с исходным металлом или сплавом, который необходимо напылить на деталь, выставляется температура нагрева в теплообменнике, она может достигать 20 тыс. °С. Если у напыляемого металла не очень хорошая адгезия с материалом заготовки, сначала наносится первичный слой из металла с более высокими адгезионными свойствами.

Ионно-вакуумное

Главным преимуществом данного метода считается отсутствие необходимости очень сильно нагревать испаритель. Металл распыляется под воздействием бомбардировки отрицательно заряженными ионами газа. Создание такой среды возможно благодаря особым разрядам внутри рабочей камеры. Для этого в оборудовании используется магнитная система с охлаждением. Тлеющий разряд для распыления напыляемого элемента создается между 2 электродами благодаря подаче высоковольтного напряжения до 4 кВ. В рабочей камере создается газовая среда с давлением до 0,6 Паскаль. По схожему принципу производится также вакуумное ионно-плазменное напыление на специализированном оборудовании.

Поверхности, пригодные для напыления

Любые предметы, способные выдерживать нагрев до 80 °С и воздействие специализированных лаков. Достоинством технологии является то, что для придания изделиям эффекта медных покрытий, зеркального хромирования, золочения, никелирования не нужно предварительно полировать поверхности. Чаще путем вакуумной металлизации покрывают детали из пластика, стекла, металлических сплавов, различные полимерные и керамические изделия. Реже, но все же технология используется для более мягких материалов, таких как древесина, текстиль, мех.

Обработка металлических заготовок и изделий из металлосплавов благодаря хорошей совместимости основания и покрытий не требует использования дополнительных расходных материалов. В то время как полимеры необходимо грунтовать предварительно защитными и адгезионными составами. Для предотвращения деформации полимерных заготовок и снижения напряжения в рабочей среде во время вакуумной металлизации используют специальные модифицирующие компоненты и режимы диффузии материала.

Этапы металлизации

Технологический процесс вакуумного напыления металла на различные изделия включает несколько последовательных этапов:

  • Подготовка детали. Важно, чтобы заготовка имела максимально простую форму, без труднодоступных для оседания конденсата мест.
  • Нанесение защиты. На полимерные основы, содержащие низкомолекулярные наполнители, необходимо нанести антидиффузионное покрытие.
  • Сушка. В течение 3 часов детали сушатся при 80 градусах по Цельсию, что позволяет удалить впитавшуюся влагу.
  • Обезжиривание. В вакуумной камере с помощью тлеющего разряда заготовка обезжиривается. Это особенно хорошо влияет на структуру полимеров.
  • Активационная обработка. Способ обработки выбирается в зависимости от материала изделия, необходимо это для повышения адгезии поверхности перед металлизацией.
  • Напыление металла. Путем конденсации создается металлизированный слой на заготовке.
  • Контроль качества покрытия. Декоративные детали осматриваются на предмет равномерности напыления и его прочности. Технические изделия испытываются дополнительно с помощью липкой ленты, ультразвуковых колебаний, трения и т.д.


Установки металлизации - довольно сложное и дорогое оборудование, потребляющее много электричества. Для создания комплексного технологического цикла требуется довольно просторное помещение, так как разместить следует несколько разнофункциональных устройств. Основные узлы вакуумной системы:

  • Блок энергообеспечения и управления в совокупности с источником конденсируемых металлов.
  • Газораспределительная система, создающая вакуумное пространство и регулирующая потоки газов.
  • Рабочая камера для проведения вакуумной металлизации.
  • Блок термического контроля, управления толщиной и скоростью напыления, свойствами покрытий.
  • Транспортирующий блок, отвечающий за изменение положения заготовок, их подачу и изъятие из камеры.
  • Устройства блокировки узлов, газовые фильтры, заслонки и прочее вспомогательное оборудование.

Магнетронное и ионно-плазменное вакуумное оборудование бывает разных габаритов, от небольших, с камерами в несколько литров до весьма крупных, с объемом камер в несколько кубических метров.

Компания «Альфа-К» располагает достаточными производственными мощностями и соответствующим оборудованием для обеспечения различных способов вакуумного напыления. У нас можно заказать ионно-плазменное покрытие изделий из любых материалов такими металлами, как титан, медь, алюминий, латунь, хром, различные сплавы и пр. Гарантируем высокое качество работы и лояльные цены.

Вакуумные системы, это комплекс взаимосвязанных элементов, обеспечивающих создание и поддержание заданного разрежения в определенном объеме. Все вакуумные системы разделяются по степени разрежения на системы низкого, высокого и сверхвысокого вакуума.

Навигация:

Кроме того, вакуумные системы

Основные компоненты вакуумных систем:

    вакуумный насос или установка, обеспечивающие откачку газовой среды;

    трубопроводы, связывающие между собой компоненты вакуумных систем;

    емкость, сосуд или другой замкнутый объем, в котором создается разрежение;

    различная запорная арматура и предохранительные устройства;

    система датчиков, осуществляющих передачу данных о состоянии системы;

    контролер, обеспечивающий управление всей системой на основании полученной от датчиков информации.

Некоторые элементы из перечисленных выше могут отсутствовать, все зависит от конкретных требований, предъявляемых к системе. Кроме того, могут дублироваться некоторые или даже все элементы, обеспечивая непрерывное поддержание заданного разрежения. Полностью автоматическая вакуумная система способна самостоятельно подключать дополнительные модули в работу, управлять запорной арматурой и постоянно поддерживать необходимую степень разрежения в заданных объемах.

Чертежи вакуумных систем в каждом конкретном случае разрабатываются с учетом требований заказчиков и должны соответствовать требованиям НТД. Они являются неотъемлемой частью любого проекта, учитывают все переменные факторы и разрабатываются обученными специалистами.

В качестве примера можно привести медицинские вакуумные системы, отключение которых может оказаться фатальным во время хирургической операции. Каждый датчик вакуумной системы такого типа обязательно дублируется, часто применяется полное дублирование системы и автономное питание. Автоматическая вакуумная система поддерживает необходимое разрежение, включая и выключая насосы, откачивающие воздух согласно показаний датчиков.

Основное применение вакуумные системы получили для:

    создания условий химических реакций в химической, нефтяной промышленности и исследовательских лабораториях;

    производства линз в оптике;

    вакуумной упаковки продуктов в пищевой промышленности;

    дегазации расплавов в металлургических плавильных печах;

    обработки электротехнических плат в электронике;

    обеспечения работы отсасывающих кровь устройств и производства некоторых препаратов в медицине;

    напыления различных по структуре и несмешиваемых материалов в автомобильной промышленности;

    создания вакуума в доильных аппаратах сельскохозяйственных предприятий.

Арматура для вакуумных систем различается на запорную, предохранительную и регулирующую. Некоторые виды регулирующей арматуры могут заменять запорную при необходимости. К запорной арматуре относится большинство вакуумных и обратных клапанов, имеющих 2 положения и обеспечивающих только отсекание (проход) рабочей среды, регулирующие и предохранительные устройства.

Рабочий макет вакуумной установки, применяемый для обучения студентов:

Вакуумная установка (напыление)

Вакуумные установки, применяемые для напыления, бывают периодического, полунепрерывного и непрерывного действия. Для массовой и серийной обработки деталей, применяются вакуумные установки непрерывного действия. Установки периодического и полунепрерывного действия могут иметь несколько загружаемых рабочих камер или одну, загружаемую несколькими позициями. Процесс напыления можно разбить на несколько операций:

  • загрузка деталей и герметизация рабочей камеры;
  • создание необходимого разрежения;
  • испарение или распыление напыляемого материала;
  • термическая обработка напыления;

Вакуумное напыление получило применение при изготовлении различных электронных плат, нанесении тонировки на стекла автомобилей и металлизации некоторых пластиков. Обычно вакуумные установки для напыления имеют в своей конструкции следующие элементы:

  • герметизируемое замкнутое пространство (рабочая камера);
  • источник испарения или распыления напыляемых материалов;
  • создающей разрежение системы, в которую входит насос и трубопроводы со всей запорной, регулирующей и предохранительной арматурой;
  • датчики, соединенные с управляющей процессом системой;
  • транспортера или другого подающего устройства;
  • дополнительных устройств (фильтров, манипуляторов, приводов, фильтрующих установок).
  • Вакуумное напыление может осуществляться с помощью:
  • катодного распыления материалов (электрический ток подается на распыляющийся катод, а так как деталь выполняет роль анода, распыленный материал напыляется на него);
  • магнетронного распыления;
  • ионно-плазменного распыления катодов;

Так как при повышении температуры поверхности обрабатываемой детали происходит отторжение наносимых частиц, поэтому очень важным является правильно организованное охлаждение. В зависимости от применяемого для создания разрежения оборудования, получает название вся установка. Например, вакуумная установка водокольцевая означает применение водокольцевых насосов при откачке газов из рабочей камеры.

Существует множество вакуумных установок, отличающихся принципом нанесения напыления, применяемым типом вакуумных насосов, степенью автоматизации, объемом и другими элементами. В качестве примера можно привести вакуумные установки УВ-24С, УВ-947, Булат-3Т, УВН-15, Магна 2М, Оратория-9 и множество других на их основе.

Схема вакуумной установки для магнетронного напыления металлов:

Оборудование вакуумных систем (арматура, фланцы, датчики)

Наиболее распространенной ошибкой при конструировании вакуумных систем является усложнение проекта и наличие множества лишних элементов. Это могут быть как лишние задвижки, повлекшие дополнительные места для герметизации, датчики, расположенные в неудобных местах и постоянно разрушаемые, фланцы, установленные там, где можно было обойтись цельной конструкцией.

Производители вакуумного оборудования в большинстве случаев изготавливают оборудование, отвечающее требованиям заказчика по производительности, максимально возможному разрежению и скорости откачки. На высокопроизводительных системах установка лишних элементов может вызвать их разгерметизацию и не обеспечить срабатывание предохранительных устройств. Поэтому, следует учесть, что вакуумная система, сконструированная непрофессионально, может быть не только неудовлетворяющей условиям эксплуатации, но и опасной для обслуживающего персонала.

Вся арматура, используемая при монтаже вакуумных систем, должна полностью соответствовать условиям эксплуатации и изготавливаться с применением соответствующих технологий. Производство вакуумного оборудования должно быть основным направлением работы предприятия, поставляющего все элементы системы.

Датчик для работы в глубоком вакууме:

Вакуумная техника (техника создания и поддержания вакуума)

Вакуумная и компрессорная техника имеют во многом сходные свойства. Довольно часто производители компрессорного оборудования изготавливают вакуумные системы и их элементы. Производство вакуумной техники основано на дополнительных методах обработки оборудования, достижению максимальной герметизации систем.

Технологии создания и поддержания вакуума совершенствовались с течением времени. На данный момент вакуумная наука и техника позволяют создавать разрежение, соответствующее глубокому космическому вакууму.

Вертикальные и горизонтальные вакуумные насосы:

Вакуумные насосы (виды и применение)

Существует несколько применяющихся видов вакуумных насосов. Каждый из них обладает своими достоинствами и недостатками, что обеспечивает свою сферу применения.

Водокольцевой насос получил свое название из-за того, что разрежение в вакуумной системе создается при помощи постоянного кольца воды в рабочей плоски. Вал насоса расположен со смещением, благодаря чему с одной стороны насоса лопасти проходят вплотную к корпусу (не задевая его), а с противоположной стороны имеется значительное расстояние до стенки.

При вращении лопасти рабочего колеса захватывают жидкость(воду), закручивая ее в виде кольца. Действующие при этом силы трения вызывают нагрев жидкости, поэтому вода в кольце постоянно подменяется свежей. Так как отсос газа происходит с помощью водяного кольца, то большинство абразивных загрязнений откачиваемой среды отфильтровывается и выходит чистый газ.

Такие насосы очень просты в обслуживании, производят быструю откачку газов, нетребовательны к их составу, но не могут создавать глубокое разрежение, что ограничивает их применение в промышленности.

Схема работы водокольцевого насоса:

Где точка Н показывает место наивысшего сжатия откачиваемого газа (подсоединение выпускного патрубка), В – вход в насос, К – водяное кольцо.

Пластинчато-роторный насос осуществляет откачку газов за счет эксцентрично расположенного по отношению к корпусу вала. На валу имеются специальные отверстия, в которые установлены пружины. Под действием пружин лопасти постоянно прижимаются к корпусу, образуя герметичные по отношению друг к другу камеры. При вращении ротора каждая камера меняет свой объем от минимального (при этом происходит максимальное сжатие находящихся в ней газов) до максимального (создавая при этом разрежение). Для того, чтобы уменьшить трение пластин о корпус, применяется специальное масло.

Сфера применения ограничена, так как требуется фильтрующее устройство, гарантирующее отсутствие абразивных частиц в откачиваемых газах и в исходящих газах присутствуют пары масел.

Схема работы пластинчато-роторных насосов:

Форвакуумный насос может быть различного типа, например, роторно-пластинчатым, водокольцевым, золотниковым. Главной задачей таких насосов является максимально быстрое создание форвакуума (предварительного разрежения) для обеспечения работы насосов, обеспечивающих высокое разрежение. Это связано с тем, что некоторые модели насосов имеют незначительную скорость откачки при нормальном атмосферном давлении и им требуется максимально возможное разрежение для создания глубокого вакуума.

В качестве второй ступени в форвакуумных насосах применяются турбомолекулярные, паромасляные диффузные и другие виды насосов.

Насосы Рутса осуществляют откачку газовых смесей благодаря наличию двух, вращающихся синхронно, роторов. Один из роторов получает вращательное движение от двигателя, а другой приводится в действие шестеренчатой передачей, обеспечивающей синхронность вращения. Конструкция позволяет создавать даже высокое разрежение, но требует обязательной очистки поступающего в рабочую камеру газа.

Схема работы 2-хкулачкового (поз «а») и 3-хкулачкового (поз «б») насосов Рутса.

Навигация:

Процесс вакуумного напыления состоит из группы методов напыления покрытий (тончайших плёнок) в вакуумной сфере, при каких компенсация выходит действием непосредственного конденсирования пара, причиняемого элемента.

Существуют следующие этапы вакуумного напыления:

  • Выработка газов (пара) с компонентов, производящих возмещение;
  • Транспортировка паров к подложке;
  • Накопление паров в подложке и создание напыления;

К перечню методов напыления вакуумным способом относятся приведенные ниже научно-технические движения, а помимо этого быстрые типы этих операций.

Перечень методов термо-напыления:

  • Испарение при помощи гальванического луча;
  • Испарение при помощи лазерного луча.

Испарение вакуумной дугой:

  • Сырье выпаривается в катодном пятнышке, за это отвечает электрическая дуга;
  • Эпитаксия при помощи молекулярного луча.

Ионное рассеивание:

  • Первоначальные сырьевые материалы распыляются бомбардировкой ионным потоком и воздействуют на подложку.

Применение

Вакуумное возмещение применяют с целью развития в плоскости компонентов, устройств и механизмов эксплуатационных покрытий - проводников, изолянтов, износостойких, коррозионно-стабильных, эрозийно-устойчивых, антифрикционных, антизадирных, барьерных и прочих. Данные манипуляции используются с целью нанесения украшающих покрытий, к примеру, при сборке часовых механизмов с позолоченной поверхностью и покрытие оправы для очков. Единый из основных операций микроэлектроники, где применяется с целью нанесения проводящих слоев (металлизации). Вакуумное возмещение используется с целью извлечения оптических покрытий: просветляющих, отражающих, фильтрующих.

В научно-техническую область способен быть внедрён химико активный газ, к примеру, ацетилен (с целью покрытий, вводящих углерод), неметалл, воздушное пространство. Хим. отклик в плоскости подложек запускается нагреванием, либо ионизацией и диссоциацией газов одной из конфигураций газового строя.

Благодаря использованию методов вакуум напылений обретают покрытие толщина которого может составлять несколько ангстрем либо достигать многих микрон, как правило в следствии нанесения напыления поверхность не требует дополнительного обрабатывания.

Методы вакуумного напыления

Судьба каждой из крупиц напыляемого компонента при соударении с поверхностью, составляющие пребывает в зависимости от ее энергии, температуры плоскости и хим. сродства элементов пленки и составляющих. Атомы или молекулы, достигнувшие плоскости, имеют все возможности либо отразиться с нее, либо адсорбироваться и через конкретный период времени, покинуть ее (десорбция), либо адсорбироваться и создавать в плоскости конденсат (уплотнитель). При высоких энергиях крупиц, высокой температуре плоскости и незначительном хим. сродстве, элемент отражается поверхностью. Температура плоскости детали, больше которой все частицы отражаются с нее и слой не сформируется, называется серьезной температурой напыления вакуумного, её значимость пребывает в зависимости от естества элементов пленки и плоскости составляющих, и от состояния плоскости. При крайне небольших потоках испаримых элементов, в том числе и в случае если данные частицы в плоскости адсорбируются, однако редко встречаются с другими аналогичными частицами, они десорбируются и не могут создавать зародышей, то есть слой совершенно не возрастает. Серьезной частотой потока испаримых компонентов с целью данной температуры плоскости называется наименьшая плотность, при которой частицы конденсируются и образовывают покров.

Вакуумно-плазменное напыление

Согласно этому методу нетолстые пленки толщиной 0,02-0,11 мкм получаются в следствии нагрева, улетучивания и осаждения компонента на подложку в отделенной камере при сжатом давлении газа в ней. В камере с помощью вакуумного насоса создается наибольшее воздействие остаточных газов приблизительно 1,2х10-3 Па.

Рабочая камера подразумевает собой металлический или стеклянный колпак с концепцией наружного водяного остужения. Камера расположена в центральной плите и создает с ней вакуумно-защищенное соединение. Подложка, в которой ведется напыление, закреплена на держателе. К подложке прилегает нагреватель, раскаливающий подложку вплоть до 2400-4400 оС, с целью улучшения адгезии напыляемой пленки. Конденсатор включает в себя нагреватель и источник напыляемого компонента. Переходная заслонка закрывает протекание паров с испарителя к подложке. Возмещение длится в процессе времени, когда затворка не захлопнута.

Для нагрева напыляемого компонента в основном используется 2 типа испарителей:

  • Прямонакальный многопроволочный либо двухленточный теплообменник, изготовляемый с вольфрама или молибдена;
  • Электронно-радиальные испарители с нагревом испаримого компонента гальванической бомбардировкой.

Для напыления пленок с многокомпонентых элементов применяется взрывное улетучивание. При этом конденсатор нагревается вплоть до 15000 оС и посыпается порошком из смеси испаримых элементов. Аналогичным методом удаётся приобретать композиционные напыления.

Некоторые популярные элементы для покрытий (к примеру, золото) располагают некачественной адгезией с кремнием и другими полупроводниковыми элементами. В случае низкокачественной адгезии испаримого элемента к подложке, испарение прокладывают в 2 пласта. Сначала поверх подложки наносят пласт сплава, имеющего отменную адгезию к полупроводниковой подложке. Затем напыляют главный слой, у которого присоединение с подслоем ранее отличное.

Ионно-вакуумное напыление

Данный метод заключается в распылении элемента причиняемого компонента, присутствующего перед негативным потенциалом, из-за бомбардировки ионами бездейственного газа, возникающих в процессе возбужденности тлеющего разряда внутри установки вакуумного напыления.

Материал отрицательно заряженного электрода распыляется пред влиянием ударяющихся о него ионизованных атомов бездейственного газа. Данные пульверизированные переходные атомы и осаждаются поверх подложки. Главным преимуществом ионно-вакуумного метода напыления является отсутствие необходимости нагрева испарителя вплоть до высокой температуры.

Механизм возникновения перетлевающего разряда. Разлагающийся разряд отслеживается в камерах с низким давлением газа между 2-я металлическими электродами, на которые подается высокое напряжение вплоть до 1-3 кВт. При этом негативный электрод как правило заземлен. Катодом является мишень с распыляемого элемента. С камеры предварительно откачивается воздушное пространство, далее запускается газ вплоть до давления 0,6 Па.

Тлеющий разряд получил свое название из-за наличия в мишени (катоде) так называемого тлеющего сияния. Это сиянье обуславливается большим падением способности в тесном пласте объёмного заряда около катода. К зоне TC прилегает область фарадеевого тёмного места, переходящая в положительный столбец, что является самостоятоятельной частью разряда, совершенно непригодной с прочих слоев разряда.

Вблизи анода, помимо этого, имеется небольшой слой объёмного заряда, называемый анодным слоем. Другой элемент межэлектродного промежутка захвачен квазинейтралом плазмы. Подобным методом, в камере отслеживается растровое свечение с чередующихся тёмных и светлых полос.

Для прохождения тока между электродами необходима устойчивая эмиссия электронов катода. Эту эмиссию разрешается вызвать согласно принуждению с помощью нагрева катода, или облучения его ультрафиолетовым светом. Подобного рода разряд является несамостоятельным.

Вакуумное напыление алюминия

В отдельных вариантах, в особенности при напылении пластмассы, используется металлизация алюминием, а этот металл — сырье достаточно легкое и никак не износостойкое, в этом случае нужны определенные специальные научно-технические способы. Пользователю необходимо понимать, что аналогичные компоненты лучше всего беречь от загрязнения сразу же по истечении штамповки, а помимо этого, нежелательно пользоваться различными смазывающими порошками и присыпками в пресс-фигурах.

Вакуумное напыление металлов

Металлы, которые могут испаряться только при температуре ниже зоны их плавления, разрешается прогревать прямоточным воздействием тока, серебряные и золотые компоновки испаряют в челночных ваннах с танталовой или вольфрамовой. Возмещение требуется производить в камере под давлением меньше 10-3 mm рт. ст.

Вакуумное ионно-плазменное напыление

Для возникновения самостоятельного тлеющего разряда необходимо вызвать эмиссию электронов с катода с помощью подачи высокого напряжения величиной 2-4 кВт между электродами. В случае если заложенное напряжение превышает способности ионизации газа в камере (как правило Ar), в этом случае, в следствии столкновений электронов с молекулами Ar, газ ионизируется с образованием положительно заряженных ионов Ar+. В следствии, в области катодного черного пространства возникает небольшой зрительный разряд и следовательно, сильное электрическое поле.

Ионы Ar+, приобретающие энергию в предоставленной зоне, выбивают атомы элемента катода, в тот же момент, провоцируя эмиссию побочных электронов с катода. Эта эмиссия и сохраняет самостоятельный тлеющий разряд. Переходные атомы с элемента катода доходят подложки и осаждаются на ее плоскости.

Установка вакуумного напыления УВН

Конструкция вооружена значимым комплексом современных приборов и устройств, что гарантируют осаждение покрытий металлов их синтезов и сплавов с учрежденными особенностями, отличной адгезией и высокой равномерностью согласно части площади.

Комплекс устройств и приборов, что входят в структуру аппарата:

  • Полуавтоматический источник управления вакуумной системой;
  • Магнетронная распылительная теория в стабильном токе;
  • Концепция нагревания (с контролем и поддержанием поставленной температуры);
  • Концепция очистки напыляемых товаров в области перетлевающего разряда;
  • Концепция перемещения продуктов в вакуумной сфере;
  • Числовой вакуумметр;
  • Концепция контроля противодействия возрастающих пленок;
  • Инверторный источник питания магнетронов.

Вакуумное напыление – принцип работы и технология вакуумного плазменного напыления. Наиболее распространенные методы вакуумного напыления. Ионно вакуумное напыление и принцип его работы. Процесс вакуумного напыления алюминия и его эффективность. Главные особенности вакуумного напыления металла и его отличие от вакуумно ионно плазменного напыления металла. Где можно окупить установку вакуумного напыления по низкой цене

Вакуумное напыление – это процесс, в котором на данном этапе нуждается большая часть современных предприятий. Используется данный метод зачастую на тех производствах, которые занимаются выпуском различной продукции, каким-то образом связанной с дальнейшей эксплуатацией.

Это может быть, как обычное оборудование, так и зубные изделия, которые также нуждаются в процессе вакуумного напыления. Как бы это странно не звучало, но именно медицинская отрасль является одним из тех направлений, где процесс вакуумного напыления используется чаще всего. Использовать в данной отрасли, его можно, как в роли улучшения свойств оборудования для работы, так и в роли покрытия различных материалов, либо же изделий.

Установка вакуумного напыления – это одна из наиболее важных составляющих данного процесса. Мало кто будет спорить с тем, что именно установка вакуумного напыления позволяет производить данный процесс, причем делать это довольно быстро. Принцип работы подобных установок максимально прост. Изначально, внутри подобных систем создается состояние первичного разрежения, которое позволяет превратить кристаллический порошок в специальную смесь, которую можно в дальнейшем наносить на разные покрытия. Далее, внутри установки значительно поднимается уровень давления, что приводи к активному образованию вакуума внутри системы. Далее, вакуум производит процесс, вспрыскивания напыления, которое сразу же оседает на нужном материале, который и будет поддаваться такой обработке.

Еще один очень важный вопрос – это надежность данного процесса. Судя по конструкции и принципу работы подобных установок, не трудно понять, что сделаны, они максимально продумано. Но нельзя исключать и вероятность поломок подобного оборудования. Но даже такая ситуация не окажется столь сложной, ведь подобное оборудование, является вполне ремонтопригодным и довольно легко поддается починке.

Методы вакуумного напыления

Учитывая тот факт, что современный рынок включает в себя огромное количество разнообразных отраслей, было принято решение, сделать сразу несколько методов вакуумного напыления. Все они уникальны и работают по совершенно разному алгоритму.

Сейчас мы рассмотрим наиболее распространенные методы вакуумного напыления:

  • Вакуумное ионно плазменное напыление
  • Вакуумное плазменное напыление
  • Вакуумное ионное напыление

Это три наиболее часто используемых вида напыления на данный момент. Большая часть предприятий, активно использует данную технологию, получая от нее максимум пользы. А это уже говорит о том, что при желании, от данного метода действительно можно получить максимум пользы.

Вакуумно плазменное напыление

Один из наиболее часто встречающихся методов вакуумного напыления – это вакуумное плазменное напыление. Технология данного процесса максимально проста и заключается она в работе внутренней плазмы. Данный элемент служит в роли некого распределителя, позволяющего сделать процесс напыления максимально качественным.

Кроме этого, подобный метод можно похвастаться еще и точностью нанесения покрытия на изделие. А все потому, что внутри установки подобного типа, заранее создан, установлен код, по которому, подобные системы обычно и работают.

Ионно вакуумное напыление

Данный тип вакуумного напыления, максимально напоминает предыдущий. Наиболее явным отличием данной технологии. Можно назвать предварительный процесс ионизации, позволяющий значительно ускорить рабочий процесс.

Наличие рабочих ионов внутри установки вакуумного напыления, не только улучшает качество рабочего процесса, а и делает его более надежным и что немаловажно, быстрым.

Вакуумное напыление алюминия

Если же говорить о том, какой материал чаще всего поддается процессу вакуумного напыления, то наверняка это алюминий. Причиной этому, послужила сфера применения данного металла, который активно используется практически во всех отраслях.

Но во многих из них, требуется, чтобы данный метод был более прочным и надежным. Именно для этого и созданы установки вакуумного напыления алюминия. Данный процесс, является максимально легким, так как материал очень даже хорошо воздействует со смесью, которая на него наносится, во время вакуумного напыления.

Вакуумное напыление металлов

Если же говорить о процессе вакуумного напыления металла, то это еще более легкий процесс. Технология напыления металла максимально проста, из-за чего ей привыкли пользоваться все предприятия. Для качественного нанесения слоя напыления на металл, требуется лишь довести его до нужной температуры. Это и есть единственное условие, которого стоит придерживаться во время вакуумного напыления.

Многие считают, что именно это и является главным преимуществом процесса вакуумного напыления металла.

Вакуумное ионно плазменное напыление

Наиболее сложным в плане конструкции и одновременно эффективным, является процесс вакуумного ионно плазменного напыления. Данная технология, включает в себя огромное количество спорных и очень важных моментов, без которых, достичь высокого уровня эффективности уж явно не получится.

С помощью данного метода, можно без проблем производить вакуумное напыление титана, либо же вакуумное напыление стекла. А это уже говорит о том, что многофункциональность данного метода находится на максимально высоком уровне.

Установка вакуумного напыления УВН

Но какой бы вид вакуумного напыления вы не выбрали, не используя при этом установок вакуумного напыления УВН, достичь в этом, каких-либо успехов у вас вряд ли получится. На данном этапе, стоимость подобных установок находится на больно высоком уровне.

Но если говорить об их эффективности, то в этом и вовсе нет никаких сомнений. Купив себе подобный агрегат, вы сможете быть полностью уверены, что со временем, он сможет отбить все вложенные в него деньги.



Понравилась статья? Поделитесь ей