Контакты

Лодка своими руками на воздушной подушке. Вездеходы на воздушной подушке. Самодельные вездеходы на воздушной подушке

Постройке транспортного средства, которое позволяло бы передвигаться как по суше, так и по воде, предшествовало знакомство с историей открытия и создания оригинальных амфибий - аппаратов на воздушной подушке (АВП), изучение принципиального их устройства, сравнение различных конструкций и схем.

С этой целью я посетил немало интернетовских сайтов энтузиастов и создателей АВП (в том числе и зарубежных), познакомился с некоторыми из них очно.

В конце концов, за прототип задуманного катера взял английский «Ховеркрафт» («парящее судно» - так в Великобритании называют АВП), построенный и испытанный тамошними энтузиастами. Наши наиболее интересные отечественные машины этого типа большей частью создавались для силовых ведомств, а в последние годы - для коммерческих целей, имели большие габариты, и потому мало подходили для любительского изготовления.

Мой аппарат на воздушной подушке (я его называю «Аэроджип») - трехместный: пилот и пассажиры располагаются по Т-образной схеме, как на трицикле: пилот впереди посередине, а пассажиры позади рядом, один около другого. Машина одномоторная, с разделяющимся воздушным потоком, для чего в его кольцевом канале немного ниже его центра установлена специальная панель.

Технические данные катера на воздушной подушке
Габаритные размеры, мм:
длина 3950
ширина 2400
высота 1380
Мощность двигателя, л. с. 31
Масса, кг 150
Грузоподъемность, кг 220
Запас топлива, л 12
Расход топлива, л/ч 6
Преодолеваемые препятствия:
подъем, град. 20
волна, м 0,5
Крейсерская скорость, км/ч:
по воде 50
по грунту 54
по льду 60

Состоит из трех основных частей: винтомоторной установки с трансмиссией, стеклопластикового корпуса и «юбки» - гибкого ограждения нижней части корпуса - так сказать, «наволочки» воздушной подушки.




1 - сегмент (плотная ткань); 2 - швартовная утка (3 шт.); 3 - ветровой козырек; 4 - бортовая планка крепления сегментов; 5 - ручка (2 шт.); 6 - ограждение воздушного винта; 7 - кольцевой канал; 8 - руль направления (2 шт.); 9 - рычаг управления рулями; 10 - лючок доступа к бензобаку и аккумулятору; 11 - сиденье пилота; 12 - пассажирский диван; 13 - кожух двигателя; 14 - двигатель; 15 - наружная оболочка; 16 - наполнитель (пенопласт); 17 - внутренняя оболочка; 18 - разделительная панель; 19 - воздушный винт; 20 - втулка воздушного винта; 21 - приводной зубчатый ремень; 22 - узел для крепления нижней части сегмента.
увеличить, 2238х1557, 464 КБ

Корпус катера на воздушной подушке

Он двойной: стеклопластиковый, состоит из внутренней и наружной оболочек.

Наружная оболочка имеет довольно простую конфигурацию - это всего лишь наклонные (около 50° к горизонтали) борта без днища - плоские почти по всей ширине и слегка выгнутые в верхней ей части. Носовая часть - скругленная, а задняя имеет вид наклонного транца. В верхней части по периметру наружной оболочки вырезаны продолговатые отверстия-пазы, а внизу снаружи закреплен в рым-болтах охватывающий оболочку трос для крепления к нему нижних частей сегментов.

Внутренняя оболочка по конфигурации посложнее, чем наружная, поскольку она имеет практически все элементы маломерного судна (скажем, шлюпки или лодки): борта, днище, выгнутые планшири, небольшую палубу в носу (нет только верхней части транца в корме), - при этом выполненные, как одна деталь. К тому же по середине кокпита вдоль него к днищу приклеен еще отдельно отформованный туннель с банкой под сиденье водителя, В нем размещаются топливный бак и аккумулятор, а также проложен трос «газа» и трос управления рулями.

В кормовой части внутренней оболочки устроен своеобразный ют, приподнятый и открытый спереди. Он служит основанием кольцевого канала для воздушною винта, а его палуба-перемычка - разделителем воздушного потока, часть которого (поддерживающий поток) направляется в отверстие шахты, а другая часть - для создания пропульсивной силы тяги.

Все элементы корпуса: внутренняя и наружная оболочки, туннель и кольцевой канал - выклеивались по матрицам из стекломата толщиной около 2 мм на полиэфирной смоле. Конечно, эти смолы уступают винилэфирным и эпоксидным по адгезии, уровню фильтрации, усадке, а также выделению вредных веществ при высыхании, но имеют неоспоримое преимущество в цене - они значительно дешевле, что немаловажно. Для тех, кто намеревается использовать такие смолы, напомню, что помещение, где проводятся работы, должно иметь хорошую вентиляцию и температуру не менее 22°С.

Матрицы изготавливались заранее по мастер-модели из таких же стекломатов на той же полиэфирной смоле, только толщина их стенок была побольше и составляла 7-8 мм (у оболочек корпуса - около 4 мм). Перед выклейкой элементов с рабочей поверхности матрицы были тщательно убраны все шероховатости и задиры, и она трижды покрывалась разбавленным в скипидаре воском и полировалась. После этого на поверхность распылителем (или валиком) был нанесен тонкий слой (до 0,5 мм) гелькоута (цветного лака) выбранного желтого цвета.

После его высыхания начался процесс выклейки оболочки по следующей технологии. Вначале с помощью валика восковая поверхность матрицы и сторона стекломата с более мелкими порами промазываются смолой, и затем мат укладывается на матрицу и прикатывается до полного удаления воздуха из-под слоя (при необходимости можно сделать и небольшую прорезь в мате). Таким же образом укладываются и последующие слои стекломатов до требуемой толщины (4-5 мм), с установкой, где необходимо, закладных деталей (металлических и деревянных). Излишние лоскуты по краям обрезаются при выклейке «помокрому».

После отвердения смолы оболочка легко снимается с матрицы и обрабатывается: обтачиваются края, вырезаются пазы, сверлятся отверстия.

Для обеспечения непотопляемости «Аэроджипа» к внутренней оболочке приклеивают куски пенопласта (например, мебельного), оставляя свободными лишь каналы для прохода воздуха по всему периметру. Куски пенопласта склеиваются между собой смолой, а к внутренней оболочке прикрепляются полосками стекломата, тоже смазанными смолой.

После изготовления по отдельности наружной и внутренней оболочек они состыковываются, скрепляются струбцинами и саморезами, а затем соединяются (склеиваются) по периметру полосками промазанного полиэфирной смолой того же стекломата шириной 40-50 мм, из которого были изготовлены сами оболочки. После этого корпус оставляют до полной полимеризации смолы.

Через сутки к верхнему стыку оболочек по периметру прикрепляют вытяжными заклепками дюралюминиевую полосу сечением 30x2 мм, установив ее вертикально (на ней фиксируются язычки сегментов). К нижней части дна приклеивают деревянные полозья размерами 1500x90x20 мм (длина х ширина х высота) на расстоянии 160 мм от края. Сверху на полозья наклеивается один слой стекломата. Точно так же, только изнутри оболочки, в кормовой части кокпита, устраивается основание из деревянной плиты под двигатель.

Стоит отметить, что по такой же технологии, по которой изготавливались наружная и внутренняя оболочки, выклеивались и более мелкие элементы: внутренняя и наружная оболочки диффузора, рули поворота, бензобак, кожух двигателя, ветроотбойник, тоннель и сиденье водителя. Тем же, кто только начинает работать со стеклопластиком, рекомендую подготавливать изготовление катера именно с этих мелких элементов. Полная масса стеклопластикового корпуса вместе с диффузором и рулями направления - около 80 кг.

Конечно, изготовление такого корпуса можно поручить и специалистам - фирмам, производящим стеклопластиковые лодки и катера. Благо и в России их немало, да и расходы будут соизмеримы. Однако в процессе самостоятельного изготовления удастся получить необходимые опыт и возможность в дальнейшем самому моделировать и создавать различные элементы и конструкции из стеклопластика.

Винтомоторная установка катера на воздушной подушке

Она включает в себя двигатель, воздушный винт и трансмиссию, передающую от первого ко второму крутящий момент.

Двигатель использован BRIGGS & STATTION, выпускающийся в Японии по американской лицензии: 2-цилиндровый, V-образный, четырехтактный, мощностью 31 л. с. при 3600 оборотах в минуту. Его гарантированный моторесурс составляет 600 тыс. часов. Запуск осуществляется электростартером, от аккумулятора, а работа свечей зажигания - от магнето.

Двигатель установлен на днище корпуса «Аэроджипа», а ось ступицы пропеллера закреплена с обоих концов на кронштейнах по центру диффузора, приподнятого над корпусом. Передача крутящего момента с выходного вала двигателя на ступицу осуществляется зубчатым ремнем. Ведомый и ведущий шкивы, как и ремень, - зубчатые.

Хотя масса двигателя не столь уж велика (около 56 кг), но расположение его на днище значительно понижает центр тяжести катера, что положительно сказывается на устойчивости и маневренности машины, особенно такой - «воздухоплавающей».

Выхлоп отработавших газов выведен в нижний воздушный поток.

Вместо установленного японского можно использовать и подходящие отечественные двигатели, - например, от снегоходов «Буран», «Рысь» и другие. Кстати, для одно- или двухместного АВП вполне подойдут двигатели мощностью поменьше - около 22 л. с.

Воздушный винт - шестилопастный, с фиксированным шагом (устанавливаемым на суше углом атаки) лопастей.



1 - стенки; 2 - крышка с язычком.

К неотъемлемой части винтомоторной установки следует отнести и кольцевой канал воздушного винта, хотя его основание (нижний сектор) выполнено заодно с внутренней оболочкой корпуса. Кольцевой канал, как и корпус - тоже составной, склеен из наружной и внутренней обечаек. Как раз в том месте, где нижний сектор его стыкуется с верхним, устроена стеклопластиковая разделительная панель: она разделяет воздушный поток, создаваемый пропеллером (а стенки нижнего сектора, наоборот, соединяет по хорде).

Двигатель, расположенный у транца в кокпите (за спинкой сиденья пассажиров), закрыт сверху стеклопластиковым капотом, а воздушный винт, кроме диффузора, - еще и проволочной решеткой спереди.

Мягкое эластичное ограждение катера на воздушной подушке (юбка) состоит из отдельных, но одинаковых сегментов, выкроенных и сшитых из плотной легкой ткани. Желательно, чтобы ткань была водоотталкивающей, не твердела на морозе и не пропускала воздух. Я использовал материал Vinyplan финского производства, но вполне подойдет отечественная ткань типа перкаль. Выкройка сегмента несложная, и сшить его можно даже вручную.

Крепится каждый сегмент к корпусу следующим образом. Язычок накидывается на бортовую вертикальную планку, с нахлестом в 1,5 см; на него - язычок соседнего сегмента, и оба они в месте нахлеста закрепляются на планке специальным зажимом типа «крокодильчик», только без зубьев. И так по всему периметру «Аэроджипа». Для надежности можно еще поставить зажим и по середине язычка. Два же нижних угла сегмента с помощью капроновых хомутиков подвешиваются свободно на тросе, обхватывающем нижнюю часть наружной оболочки корпуса.

Такая составная конструкция юбки позволяет без проблем заменять вышедший из строя сегмент, на что потребуется 5-10 минут. К месту будет сказать, что конструкция оказывается работоспособной при выходе из строя до 7% сегментов. Всего же их размещается на юбке до 60 штук.

Принцип движения катера на воздушной подушке следующий. После запуска двигателя и его работы на холостом ходу аппарат остается на месте. При увеличении числа оборотов воздушный винт начинает гнать более мощный поток воздуха. Часть его (большая) создает пропульсивную силу и обеспечивает катеру движение вперед. Другая же часть потока уходит под разделительную панель в бортовые воздуховоды корпуса (свободное пространство между оболочками до самой носовой части), и далее через отверстия-пазы в наружной оболочке равномерно поступает в сегменты. Этот поток одновременно с началом движения создает воздушную подушку под днищем, приподнимая аппарат над подстилающей поверхностью (будь то грунт, снег или вода) на несколько сантиметров.

Поворот «Аэроджипа» осуществляется двумя рулями направления, отклоняющими «поступательный» поток воздуха в сторону. Управление рулями осуществляется от двуплечего рычага рулевой колонки мотоциклетного типа, через боуденовский трос, идущий по правому борту между оболочками к одному из рулей. Другой руль соединен с первым жесткой тягой.

На левой рукоятке двуплечего рычага закреплена и манетка управления дроссельной заслонкой карбюратора (аналог ручки газа).



Для эксплуатации катера на воздушной подушке его необходимо зарегистрировать в местной государственной инспекции по маломерным судам (ГИМС) и получить судовой билет. Для получения же удостоверения на право управления катером надо пройти еще и курс обучения по управлению .

Однако и на этих курсах пока еще далеко не везде есть инструкторы по пилотированию аппаратов на воздушной подушке. Поэтому каждому пилоту приходится осваивать управление АВП самостоятельно, буквально по крупицам набирая соответствующий опыт.

В России существуют целые сообщества людей, который собирают и разрабатывают любительские СВП. Это очень интересное, но, к сожалению, сложное и далеко не дешевое занятие.

Изготовление корпуса КВП

Известно, что суда на воздушной подушке испытывают гораздо меньшие нагрузки, чем обычные глиссирующие лодки и катера. Всю нагрузку на себя берет гибкое ограждение. Кинетическая энергия при движении не передается на корпус и это обстоятельство делает возможным монтаж любого корпуса, без сложных рассчетов прочности. Единственное ограничение для корпуса любительского КВП — вес. Это обязательно следует учитывать при выполнении теоретических чертежей.

Так же важным аспектом является степень сопротивления встречному воздушному потоку. Ведь аэродинамические характеристики напрямую влияют на расход топлива, который, даже у любительских СВП, сравним с расходом среднего внедорожника. Профессиональный аэродинамический проект стоит больших денег, поэтому конструкторы-любители делают все "на глаз", просто заимствуюя линии и формы у лидеров автопрома или авиации. Про авторские права в данном случае можно не думать.


Для изготовления корпуса будущего катера можно использовать рейки из ели. В качестве обшивки — фанеру толщиной 4 мм, которая крепится при помощи эпоксидного клея. Оклейка фанеры плотной тканью (например, стеклотканью) нецелесообразна в виду значительного увеличения веса конструкции. Это наиболее технологически не сложный способ.

Наиболее искушенные представители сообщества создают корпуса из стеклопластика по собственным компьютерным 3d-моделям или на глаз. Для начала создается прототип и материала типа пенопласта с которого снимается матрица. Далее корпуса делаются точно так же, как лодки и катера из стеклопластика.


Непотопляемости корпуса можно достигнуть множеством способов. Например при помощи установки в бортовые отсеки перегородок, непроницаемых для воды. А еще лучше - можно заполнить эти отсеки пенопластом. Можно установить под гибкое ограждение надувные баллоны, на подобии лодок ПВХ.

Силовая установка СВП

Основной вопрос - сколько, и он встречает конструктора на всем пути проектирования силовой системы. Сколько двигателей, сколько должна весить рама и двигатель, сколько вентиляторов, сколько лопастей, сколько оборотов, сколько градусов сделать угол атаки и в конце концов сколько это будет стоить. Именно данный этап является наиболее затратным, ведь в кустарных условиях невозможно соорудить двигатель внутреннего сгорания или лопасть вентилятора с нужным КПД и уровнем шума. Такие вещи приходится покупать, и стоят они не дешего.


Сложнейшим этапом сборки оказался монтаж гибкого ограждения катера, удерживающего воздушную подушку точно под корпусом. Известно, что из-за постоянного контакта с пересеченной местностью она склонна к быстрому износу. Поэтому для ее создания была использована брезентовая ткань. Сложная конфигурация стыков ограждения потребовала расхода такой ткани в количестве 14 метров. Его износостойкость можно увеличить за счет пропитки резиновым клеем с добавлением алюминиевой пудры. Такое покрытие имеет огромное практическое значение. В случае износа или разрывов гибкого ограждения его можно без труда восстановить. По аналогии с наращиванием автомобильного протектора. По словам автора проекта, перед тем как приступить к изготовлению ограждения, следует запастись максимальным терпением.

Установка готового ограждения, как и сборка самого корпуса, должны выполняться при условии нахождения будущего катера вверх килем. После раскантовки корпуса можно устанавливать силовую установку. Для этой операции понадобится шахта размерами 800 на 800. После того как система управления будет подведена к двигателю, наступает наиболее волнительный во всем процессе момент — испытание катера в реальных условиях.

Однажды зимой, когда я, прогуливаясь по берегу Даугавы, разглядывал занесенные снегом лодки, у меня родилась мысль - создать всесезонное средство передвижения, т. е. амфибию , которую можно было бы использовать и в зимнее время.

После долгих раздумий выбор мой пал на двухместный аппарат на воздушной подушке . Сначала ничего, кроме огромного желания создать такую конструкцию, у меня не было. Доступная мне техническая литература обобщала опыт создания только больших СВП, а по малым аппаратам прогулочно-спортивного назначения никаких данных найти я не смог, тем более что нашей промышленностью такие СВП не выпускаются. Итак, надеяться можно было только на собственные силы и опыт (о моем катере-амфибии на базе мотолодки «Янтарь» в свое время сообщалось в «КЯ»; см № 61).

Предвидя, что в будущем у меня могут найтись последователи, а при положительных результатах моим аппаратом может заинтересоваться и промышленность, я решил конструировать его на базе хорошо освоенных и имеющихся в продаже двухтактных двигателей.

В принципе аппарат на воздушной подушке испытывает существенно меньшие нагрузки, чем традиционный глиссирующий корпус катера; это позволяет конструкцию его делать более легкой. В то же время появляется и дополнительное требование: корпус аппарата должен иметь малое аэродинамическое сопротивление. Это необходимо учесть при разработке теоретического чертежа.

Основные данные амфибии на воздушной подушке
Длина, м 3,70
Ширина, м 1,80
Высота борта, м 0,60
Высота воздушной подушки, м 0,30
Мощность подъемной установки, л. с. 12
Мощность тяговой установки, л. с. 25
Полезная грузоподъемность, кг 150
Общий вес, кг 120
Скорость, км/ч 60
Расход топлива, л/ч 15
Емкость топливного бака, л 30


1 - руль; 2 - приборный щиток; 3 - продольное сиденье; 4 - подъемный вентилятор; 5 - кожух вентилятора; 6 - тяговые вентиляторы; 7 - шкив вала вентилятора; 8 - шкив двигателя; 9 - тяговый двигатель; 10 - глушитель; 11 - створки управления; 12 - вал вентиляторов; 13 - подшипники вала вентиляторов; 14 - ветровое стекло; 15 - гибкое ограждение; 16 - тяговый вентилятор; 17 - кожух тягового вентилятора; 18 - подъемный двигатель; 19 - глушитель подъемного двигателя;
20 - электростартер; 21 - аккумулятор; 22 - топливный бак.

Набор корпуса я изготовил из еловых реек сечением 50х30 и обшил 4-миллиметровой фанерой на эпоксидном клее. Оклейку стеклотканью не делал, опасаясь увеличения веса аппарата. Для обеспечения непотопляемости в каждый из бортовых отсеков поставил по две водонепроницаемые переборки, а также заполнил отсеки пенопластом.

Выбрана двухмоторная схема силовой установки, т. е. один из двигателей работает на подъем аппарата, создавая избыточное давление (воздушную подушку) под его днищем, а второй обеспечивает движение - создает тягу по горизонтали. Подъемный двигатель исходя из расчета должен был иметь мощность 10-15 л. с. Наиболее подходящим по основным данным оказался двигатель от мотороллера «Тула-200», но поскольку ни крепления, ни подшипники его не удовлетворяли по конструктивным соображениям, пришлось отлить из алюминиевого сплава новый картер. Этот двигатель приводит в движение 6-лопастной вентилятор диаметром 600 мм. Суммарный вес подъемной силовой установки вместе с креплениями и электростартером получился около 30 кг.

Одним из самых сложных этапов оказалось изготовление юбки - гибкого ограждения подушки, которое быстро изнашивается при эксплуатации. Применена имеющаяся в продаже брезентовая ткань шириной 0,75 м. Из-за сложной конфигурации стыков потребовалось около 14 м такой ткани. Полоса разрезалась на куски длиной, равной длине борта, с припуском на довольно сложную форму стыков. После придания необходимой формы стыки сшивались. Края ткани крепились к корпусу аппарата дюралевыми полосами 2х20. Установленное гибкое ограждение для повышения износостойкости я пропитал резиновым клеем, в который добавил алюминиевой пудры, придающей нарядный вид. Такая технология дает возможность реставрировать гибкое ограждение при аварии и по мере износа, подобно наращиванию протектора автомобильной шины. Надо подчеркнуть, что изготовление гибкого ограждения не просто отнимает много времени, но требует особой аккуратности и терпения.

Сборка корпуса и установка гибкого ограждения выполнялись в положении вверх килем. Затем корпус раскантовали и в шахте размером 800х800 установили подъемную силовую установку. Была подведена система управления установкой, и вот наступил самый ответственный момент; ее опробование. Оправдаются ли расчеты, поднимет ли сравнительно маломощный двигатель такой аппарат?

Уже при средних оборотах двигателя амфибия вместе со мной приподнялась и зависла на высоте около 30 см от земли. Запаса подъемной силы оказалось вполне достаточно, чтобы прогретый двигатель на полных оборотах поднимал даже четверых. В первые же минуты этих испытаний стали выявляться особенности аппарата. После соответствующей центровки он свободно передвигался на воздушной подушке в любом направлении даже от небольшого приложенного усилия. Создавалось впечатление, будто он плывет по водной поверхности.

Успех первого испытания подъемной установки и корпуса в целом окрылил меня. Закрепив лобовое стекло, я приступил к монтажу тяговой силовой установки. Вначале казалось целесообразным воспользоваться большим опытом постройки и эксплуатации аэросаней и установить двигатель с воздушным винтом сравнительно большого диаметра на кормовой палубе. Однако следовало учесть, что при таком «классическом» варианте существенно повысился бы центр тяжести столь малого аппарата, что неминуемо отразилось бы на его ходовых качествах и - главное - на безопасности. Поэтому я решил применить два тяговых двигателя, полностью аналогичных подъемному, и установил их в кормовой части амфибии, но не на палубе, а по бортам. После того, как я изготовил и смонтировал привод управления мотоциклетного типа и установил тяговые воздушные винты относительно малого диаметра («вентиляторы»), первый вариант аппарата на воздушной подушке был готов к ходовым испытаниям.

Для перевозки амфибии за автомашиной «Жигули» был изготовлен специальный трейлер, и вот летом 1978 г. я погрузил на него свой аппарат и доставил его на луг у озера под Ригой. Настал волнующий момент. В окружении друзей и любопытных я занял место водителя, завел подъемный двигатель, и мой новый катер повис над лугом. Завел оба тяговых двигателя. При увеличении числа их оборотов амфибия стала перемещаться по лугу. И тут стало ясно, что многолетнего опыта управления автомобилем и мотолодкой явно недостаточно. Все прежние навыки не годятся. Надо осваивать методы управления аппаратом на воздушной подушке, который может до бесконечности кружиться на одном месте, подобно юле. С увеличением скорости увеличивался и радиус поворота. Любые неровности поверхности вызывали поворот аппарата.

Освоившись с управлением, я направил амфибию по пологому берегу к поверхности озера. Оказавшись над водой, аппарат сразу же начал терять скорость. Тяговые двигатели стали поочередно глохнуть, заливаемые брызгами, вырывавшимися из-под гибкого ограждения воздушной подушки. При прохождении заросших участков озера вентиляторы втягивали камыши, кромки их лопастей выкрашивались. Когда же я выключил двигатели, а затем решил попробовать взять старт с воды, то ничего не вышло: аппарат мой так и не смог вырваться из «ямы», образованной подушкой.

В общем, то была неудача. Однако первое поражение не остановило меня. Я пришел к выводу, что при существующих характеристиках для моего аппарата на воздушной подушке недостаточна мощность тяговой установки; именно поэтому он не мог двинуться вперед при старте с глади озера.

За зиму 1979 г. я полностью переделал амфибию, уменьшив длину ее корпуса до 3,70 м, а ширину - до 1,80 м. Сконструировал и совершенно новую тяговую установку, полностью защищенную и от брызг, и от контакта с травой и камышом. Для упрощения управления установкой и снижения ее веса применен один тяговый двигатель вместо двух. Использована силовая головка 25-сильного подвесного мотора «Вихрь-М» с полностью переделанной системой охлаждения. Замкнутая система охлаждения объемом 1,5 л заполнена тосолом. Крутящий момент двигателя передается на расположенный поперек аппарата «гребной» вал вентиляторов при помощи двух клиновых ремней. Шестилопастные вентиляторы нагоняют воздух в камеру, из которой он вырывается (попутно охлаждая двигатель) за корму через квадратное сопло, снабженное створками управления. С аэродинамической точки зрения такая тяговая установка, видимо, не очень-то совершенна, но она довольно надежна, компактна и создает тягу около 30 кгс, оказавшуюся вполне достаточной.

В середине лета 1979 г. мой аппарат снова был перевезен на тот же луг. Освоившись с управлением, я направил его к озеру. На этот раз, оказавшись над водой, он продолжал движение, не теряя скорости, словно по поверхности льда. Легко, без помех, преодолевал отмели и камыши; особенно приятно было двигаться над заросшими участками озера, здесь не оставалось даже туманного следа. На прямом участке один из владельцев с мотором «Вихрь-М» пошел параллельным курсом, но вскоре отстал.

Особое удивление вызвал описываемый аппарат у любителей подледного лова, когда я продолжил испытания амфибии зимой на льду, который был покрыт слоем снега толщиной около 30 см. На льду было настоящее раздолье! Скорость можно было увеличить до максимальной. Точно ее не замерял, но опыт автоводителя позволяет утверждать, что она приближалась к 100 км/ч. При этом амфибия свободно преодолевала глубокие следы от мотонарт.

Рижской телестудией был снят и показан небольшой фильм, после чего я стал получать много запросов от желающих построить подобный амфибийный аппарат.


Все началось с того, что я хотел сделать какой-нибудь проект и вовлечь в него внука. У меня большой инженерный опыт за плечами, поэтому простых проектов я не искал, и вот, как то раз смотря ТВ, я увидел лодку, которая двигалась за счет пропеллера. "Классная штука!" - подумал я, и начал шерстить просторы интернета в поисках хоть какой то информации.

Мотор мы взяли со старой газонокосилки, а саму планировку купили (стоит 30$) . Она хороша тем, что требует только одного мотора, большинство же подобных лодок требуют двух движков. В той же компании мы купили пропеллер, пропеллерный хаб, ткань для воздушной подушки, эпоксидную смолу, стекловолокно и шурупы (все это они продают в одном наборе). Остальные материалы довольно банальные и могут быть куплены в любом строительном магазине. Итоговый бюджет немногим превысил 600$.

Шаг 1: Материалы


Из материалов понадобятся: пенопласт, фанера, кит от Universal Hovercraft (~500$). В наборе есть все мелочи, которые понадобятся для выполнения проекта: план, стекловолокно, пропеллер, хаб для пропеллера, ткань для воздушной подушки, клей, эпоксидная смола, втулки и т.д. Как и писал в описании, на все материалы ушло порядка 600$.

Шаг 2: Делаем каркас


Берем пенопласт (толщина 5 см) и вырезаем из него прямоугольник 1.5 на 2 метра. Такие размеры обеспечат плавучесть веса в ~270 кг. Если 270 кг кажется мало, можно взять еще один такой же лист и прикрепить его понизу. Лобзиком вырезаем две дырки: одна для входящего потока воздуха и другая для надува подушки.

Шаг 3: Покрываем стеловолокном


Нижняя часть корпуса должна быть водонепроницаемой, для этого покрываем ее стекловолокном и эпоксидкой. Чтобы все высохло как надо, без неровностей и шероховатостей, нужно избавиться от воздушных пузырей, которые могут возникнуть. Для этого можно использовать промышленный пылесос. Покрываем стекловолокно слоем пленки, затем покрываем одеялом. Покрытие нужно, чтобы одеяло не приклеилось к волокну. Затем одеяло покрываем еще одним слоем пленки и приклеиваем к полу липкой лентой. Делаем небольшой разрез, засовываем в него хобот пылесоса и включаем. В таком положении оставляем на пару часов, когда процедура завершится, пластик можно будет отскрести от стекловолокна без каких либо усилий, он к нему не приклеится.

Шаг 4: Нижняя часть корпуса готова


Нижняя часть корпуса готова, и выглядит сейчас примерно так как на фото.

Шаг 5: Делаем трубу


Труба делается из стирофома, толщиной в 2.5 см. Сложно описать весь процесс, но в плане он расписан подробно, у нас никаких проблем на этом этапе не возникло. Отмечу лишь что диск из фанеры временный, и на последующих шагах будет снят.

Шаг 6: Держатель для мотора


Конструкция не хитрая, сооружается из фанеры и брусков. Размещается точно по центру корпуса лодки. Крепится на клей и шурупы.

Шаг 7: Пропеллер


Пропеллер можно приобрести в двух видах: готовый, и "полуфабрикат". Готовый как правило гораздо дороже, и покупая полуфабрикат можно хорошо сэкономить. Так мы и сделали.

Чем ближе лопасти пропеллера к краям воздухоотвода, тем эффективнее работает последний. Как только вы определились с зазором, можно отшлифовать лопасти. Как только шлифовка закончена, нужно обязательно провести балансировку лопастей, чтобы в будущем не было вибраций. Если одна из лопастей весит больше другой, то вес нужно выровнять, но не урезанием концов, и шлифовкой. Как только баланс найден, можно нанести пару слоев краски чтобы он сохранился. Для безопасности желательно наконечники лопастей покрасить в белый цвет.

Шаг 8: Воздушная камера


Воздушная камера разделяет потоки входящего и исходящего воздуха. Делается из 3 мм фанеры.

Шаг 9: Установка воздушной камеры


Воздушная камера крепится на клей, но можно и на стекловолокно, я предпочитаю всегда использовать волокно.

Шаг 10: Направляющие


Направляющие делаются из 1 мм фанеры. Чтобы придать им прочности, покройте одним слоем стекловолокна. На фото не очень хорошо видно, но все же можно заметить, что оба направляющих соединены вместе по низу алюминиевой планкой, делается это чтобы они работали синхронно.

Шаг 11: Придадим лодке форму, добавим боковые панели


Очертания формы/контура делаются на днище, после чего по очертаниям крепится на шурупы деревянная планка. Фанера в 3 мм гнется хорошо, и ложится прямо по нужной нам форме. Далее крепим и клеим 2 см балку вдоль верхнего края боков из фанеры. Добавляем поперечную балку, и устанавливаем рукоятку, которая будет рулем. К ней крепим тросики отходящие от направляющих лопастей установленных ранее. Теперь можно раскрасить лодку, желательно нанести несколько слоев. Мы выбрали белый цвет, с ним даже при длительных прямых лучах солнца корпус практически не греется.

Должен сказать, что плывет она резво, и это радует, но удивило меня рулевое управление. На средних скоростях повороты получаются, а вот на большой скорости лодку сначала заносит в бок, а потом еще по инерции некоторое время она движется назад. Хотя немного приноровившись я понял, что наклоняя тело в сторону поворота и немного сбавляя газ можно заметно снизить этот эффект. Точную скорость сказать сложно, т.к на лодке нет спидометра, но по ощущениям она вполне себе хорошая, и после лодки еще остается приличный след и волны.

В день теста лодку опробовало около 10 человек, самый грузный весил около 140 кг, и она его выдержала, хотя выжать скорость которая доступна нам у него конечно же не вышло. С весом до 100 кг лодка идет резво.

Вступить в клуб

узнавайте о самых интересных инструкциях раз в неделю, делитесь своими и участвуйте в розыгрышах!



Понравилась статья? Поделитесь ей