Контакты

График отпуска тепловой энергии. Температурные графики режимов центрального качественного регулирования отпуска тепла потребителям и их применение в теплоснабжении. Регулирование отпуска тепла. Центральное качественное регулирование отпуска тепла потребит

Регулирование нагрузки в системах теплоснабжения

Системы теплоснабжения представляют собой взаимосвязанный комплекс потребителей теплоты, отличающихся как характером, так и величиной теплопотребления. Режимы расходов теплоты многочисленными абонентами неодинаковы. Тепловая нагрузка отопительных установок изменяется в зависимости от температуры наружного воздуха, оставаясь практически стабильной в течение суток. Расход теплоты на горячее водоснабжение и для ряда технологических процессов не зависит от температуры наружного воздуха, но изменяется как по часам суток, так и по дням недели.

В этих условиях необходимо искусственное изменение параметров и расхода теплоносителя в соответствии с фактической потребностью абонентов. Регулирование повышает качество теплоснабжения, сокращает перерасход тепловой энергии и топлива.

В зависимости от места осуществления регулирования различают центральное, групповое, местное и индивидуальное регулирование.

Центральное регулирование выполняют на ТЭЦ или в котельной попреобладающей нагрузке, характерной для большинства абонентов. В городских тепловых сетях такой нагрузкой может быть отопление или совместная нагрузка отопления и горячего водоснабжения. На ряде технологических предприятий преобладающим является технологическое тепло-потребление.

Групповое регулирование производится в центральных тепловыхпунктах (ЦТП) для группы однородных потребителей. В ЦТП поддерживаются требуемые расход и температура теплоносителя, поступающего в распределительные или во внутриквартальные сети.

Местное регулирование предусматривается на абонентском вводе длядополнительной корректировки параметров теплоносителя с учетом местных факторов.

Индивидуальное регулирование осуществляется непосредственно у теплопотребляющих приборов, например, у отопительных приборов систем отопления, и дополняет другие виды регулирования.

Тепловая нагрузка многочисленных абонентов современных систем теплоснабжения неоднородна не только по характеру теплопотребления, но и по параметрам теплоносителя. Поэтому центральное регулирование отпуска теплоты дополняется групповым, местным и индивидуальным, т. е. осуществляется комбинированное регулирование. Комбинированное


регулирование, состоящее из нескольких ступеней, взаимно дополняющих друг друга, создает наиболее полное соответствие между отпуском тепло-ты и фактическим теплопотреблением.

По способу осуществления регулирование может быть авто-матическим и ручным.

Сущность методов регулирования вытекает из уравнения теплового баланса

где Q - количество теплоты, полученное прибором от теплоносителя и отданное нагреваемой среде, кВт/ч; G c . в - расход теплоносителя - сете

вой воды, кг/ч; с - теплоемкость теплоносителя, кДж/кг°С; 1 , 2 - тем-пература теплоносителя на входе и выходе из теплообменника, °С.

Регулирование тепловой нагрузки возможно несколькими методами: изменением температуры теплоносителя - качественный метод; измене-нием расхода теплоносителя - количественный метод; периодическим от-ключением систем - прерывистое регулирование; изменением поверхно-сти нагрева теплообменника. Сложность осуществления последнего мето-да ограничивает возможность его широкого применения.

Качественное регулирование осуществляется изменением тем-пературы при постоянном расходе теплоносителя. Качественный метод яв-ляется наиболее распространенным видом центрального регулирования водяных тепловых сетей.

Количественное регулирование отпуска теплоты производится изменением расхода теплоносителя при постоянной его температуре в подающем трубопроводе.

Качественно-количественное регулирование выполняется путем со-вместного изменения температуры и расхода теплоносителя.

Прерывистое регулирование достигается периодическим от-ключением систем, т. е. пропусками подачи теплоносителя, в связи с чем этот метод называется регулированием пропусками.

Центральные пропуски возможны лишь в тепловых сетях с однородным теплопотреблением, допускающим одновременные перерывы в пода-че теплоты. В современных системах теплоснабжения с разнородной тепловой нагрузкой регулирование пропусками используется для местного регулирования.


В паровых системах теплоснабжения качественное регулирование не-приемлемо ввиду того, что изменение температур в необходимом диапазоне требует большого изменения давления. Центральное регулирование паро-вых систем производится в основном количественным методом или путем пропусков. Однако периодическое отключение приводит к неравномерному прогреву отдельных приборов и к заполнению системы воздухом. Более эффективно местное или индивидуальное количественное регулирование.

Современные системы теплоснабжения характеризуются наличием разнородных потребителей, отличающихся как видом теплопотребления, так и параметрами теплоносителя. Наряду с отопительными установками значительное количество теплоты расходуется на горячее водоснабжение, возрастает вентиляционная нагрузка. При одновременной подаче теплоты по двухтрубным тепловым сетям для разнородных потребителей цен-тральное регулирование, выполняемое по преобладающей нагрузке, долж-но быть дополнено групповым и местным регулированием.

Температура сетевой воды в подающем трубопроводе закрытых систем не должна быть ниже 70 °С, так как при более низких температурах нагрев водопроводной воды в теплообменнике до 60-65 °С будет невозможен.

В результате такого ограничения график температур имеет вид лома-ной линии с точкой излома при минимально допустимой температуре воды (рис. 6.7). В открытых системах температура воды в подающей линии не

должна превышать 60 °С (τ 1 = t г 60 °С). Температура наружного воздуха, соответствующая точке «излома» или «срезки» графика, обозначается t н .

При температурах наружного воздуха выше t н центральное регулирование

сезонной нагрузки во избежание перегрева помещений дополняется местным регулированием.

В зависимости от соотношения нагрузок горячего водоснабжения и отопления центральное регулирование разнородной нагрузки производится по отопительной нагрузке или по совместной нагрузке отопления и горячего водоснабжения.

Центральное качественное регулирование по отопительной нагрузке принимается в системах теплоснабжения со среднечасовой нагрузкой горячего водоснабжения, не превышающей 15 %, от расчетного расхода теп-лоты на отопление.


Рис. 6.7. График температур при комби-нированном регулировании отопительной на-грузки: 1 , 2. о - температуры сетевой воды в

подающем и обратном трубопроводах теплосе-ти; 1 , 2. о и 1 , 2. о - температуры сетевой воды в подающем и обратном трубопроводах теплосети при t н ро и при t н соответственно

ро
t н t н

Точка излома температурного графика делит отопительный период на два диапазона (рис. 6.7): 1 - в интервале наружных температур 2 - в интервале температур . Граница между диапазонами находится графически в точке пересечения кривой с горизонтальной линией, соответствующей t = 70 °С.

График температур, приведенный на рис. 6.7, носит название отопительно-бытового.

Вопросы для самоконтроля

1. Поясните устройство водяных и паровых систем теплоснабжения, их плюсы и минусы.

2. Какие существуют схемы подключения абонентов к водяным сис-темам теплоснабжения? Начертите их и объясните принцип работы.

3. Какие существуют тепловые нагрузки?

4. Каким образом может осуществлятся регулирование нагрузок в системах теплоснабжения?


Для систем отопления, вентиляции и кондиционирования воздуха главным фактором, влияющим на расход тепла, является температура наружного воздуха. Расходы тепла на покрытие нагрузок горячего водоснабжения и технологического потребления от температуры наружного воздуха не зависят. Методика изменения отпуска тепла потребителям в соответствии с графиками их теплопотребления называется системой регулирования отпуска тепла.

Различают центральное, групповое и местное регулирование отпуска тепла. Центральное регулирование тепловой нагрузки осуществляется у источника тепла — на ТЭЦ или в районной котельной. Групповое и местное регулирования производятся у потребителей тепла и рассматриваются как дополнительные к центральному.

Групповое регулирование может выполняться в тепловых пунктах промышленных предприятий, в групповых или индивидуальных узлах присоединения местных систем, а местное — у нагревательных приборов систем потребления. По условиям эксплуатации центральное регулирование предпочтительнее группового и местного.

При теплоносителе воде среднюю температуру в нагревательном приборе можно регулировать изменением температуры теплоносителя при входе в нагревательный прибор, выходе из него или одновременным изменением на входе и выходе.

В зависимости от метода воздействия на среднюю температуру теплоносителя известны три системы центрального регулирования отпуска тепла в водяных системах теплоснабжения:

а) качественное — изменением температуры воды в подающем трубопроводе (без регулирования расхода воды);

б) количественное — изменением расхода воды при сохранении постоянной температуры воды в подающем трубопроводе;

в) качественно-количественное — изменением температуры и расходов воды в подающем трубопроводе.

В городских системах централизованного теплоснабжения преимущественно применяется центральное качественное регулирование отпуска тепла, дополняемое на вводах потребителей местным количественным регулированием. В промышленных системах теплоснабжения, характеризующихся большими нагрузками воздушного отопления, возможно частичное применение количественного регулирования тепловой нагрузки. Применение качественно-количественного регулирования отпуска тепла возможно только при одной отопительной нагрузке. Значительного распространения этот метод регулирования не получил.

Качественный метод регулирования. Температурный график для отопительной нагрузки при качественном регулировании строится из предположения постоянного расхода воды в системах отопления в течение всего отопительного сезона. Отпуск тепла регулируется изменением температуры воды в подающей магистрали тепловой сети. Конечной задачей регулирования является поддержание заданной температуры в помещении за счет теплоотдачи нагревательных приборов. Теплоотдача нагревательных приборов должна соответствовать тепловым потерям через ограждающие конструкции зданий, т. е. через стены, окна, перекрытие верхнего этажа и пол первого этажа.

Циркуляция постоянного количества (расхода) воды стабилизирует гидравлический режим сети, так как на всем протяжении отопительного сезона каждый ввод имеет постоянный перепад давлений. Однако следует иметь в виду, что в условиях реальной эксплуатации будет изменяться расход воды в тепловой сети вследствие присоединения и отключения потребителей, а главным образом ввиду колебаний нагрузки горячего водоснабжения из-за переменной температуры сетевой воды, суточных и недельных колебаний в разборе горячей воды.

Температурный график может строиться по отопительной нагрузке, тогда он называется отопительным или нормальным графиком, и по суммарной нагрузке отопления и горячего водоснабжения, тогда он называется в закрытой системе повышенным графиком, а в открытой системе — скорректированным графиком.

Средняя за сутки температура подаваемой воды (с допуском колебаний в пределах отдельных часов) должна строго соответствовать средней за сутки температуре наружного воздуха.

Предварительно средняя температура воздуха берется по прогнозу погоды.

Недостаток центрального качественного регулирования состоит в том, что оно не всегда удовлетворяет условиям отопления всех жилых зданий, так как расчет температурного графика ведется по типовому абоненту и не учитывает солнечной радиации, бытовых тепловыделений и ветра.

Классификация режимов регулирования

ОТПУСК ТЕПЛОТЫ

Тепловая нагрузка абонентов не постоянна. Она изменяется в зависимости от метеорологических условий (t н, Q инс, ν в и т.д.), режима расхода воды на горячее водоснабжение, режима работы технологического оборудования и т.д. Для обеспечения высокого качества теплоснабжения, а также экономических режимов выработки теплоты на станции и транспорта ее по тепловым сетям выбирается соответствующий метод регулирования.

1. В зависимости от места осуществления регулирования различают центральное, групповое, местное и индивидуальное регулирование:

а) центральное регулирование производится на станции или в котельной по преобладающей нагрузке, характерной для большинства абонентов. В городе такой нагрузкой является нагрузка на отопление Q о или совместная нагрузка на отопление и горячее водоснабжение Q о + Q гв. На ряде промышленных предприятий преобладающей нагрузкой является нагрузка на технологию Q тех;

б) групповое регулирование производится в ЦТП для группы однородных потребителей. В ЦТП поддерживаются требуемые расходы и температура теплоносителя, поступающие в распределительные или во внутриквартальные сети;

в) местное регулирование предусматривается на вводе в дом для дополнительной корректировки параметров теплоносителя с учетом местных факторов;

г) индивидуальное регулирование осуществляется непосредственно у теплопотребляющих приборов (у нагревательных приборов) и дополняет другие виды регулирования.

В городе применяется не менее трех ступеней регулирования: центральное; групповое или местное; индивидуальное.

Тепловая нагрузка многочисленных абонентов современных систем теплоснабжения неоднородна не только по характеру теплопотребления, но и по параметрам теплоносителя. Поэтому центральное регулирование дополняется групповым, местным и индивидуальным, т.е. осуществляется комбинированное регулирование.

д) комбинированное регулирование состоит из нескольких ступеней регулирования, взаимодополняющих друг друга. Обеспечивает наиболее полное соответствие между отпуском теплоты и ее потреблением.

2. По способу осуществления регулирования может быть автоматическим и ручным.

3. По методу регулирование тепловой нагрузки различают: качественное регулирование, количественное регулирование и качественно-количественное регулирование.

Сущность методов регулирования вытекает из уравнений теплового баланса

Из уравнения следует, что регулирование нагрузки возможно несколькими способами. Принципиально возможно изменение пяти параметров: F нп, К нп, G , Т 1 , n (час ).


Регулирование изменением поверхности нагрева приборов F и коэффициента теплопередачи К сложно и неэффективно. Регулирование временем отпуска теплоты или временем нагрева нагревательных приборов возможно лишь при строго однородной нагрузке, т.к. перерывы в подаче теплоты могут быть недопустимы для других потребителей. Таким образом, практически тепловую нагрузку можно центрально регулировать только путем изменения Т 1 или G . При этом надо иметь ввиду, что возможный диапазон изменения Т 1 и G в реальных условиях ограничен рядом обстоятельств.

При разнородной тепловой нагрузке нижним пределом Т 1 является температура, требуемая для горячего водоснабжения (60 ºС – в открытых системах и 70 ºС – в закрытых). Верхний предел Т 1 определяется дополнительным давлением в подающей линии тепловой сети из условий невскипания воды.

Верхний предел G определяется располагаемым напором на ЦТП и гидравлическим сопротивлением абонентских установок:

а) качественное регулирование заключается в регулировании отпуска теплоты путем изменения Т 1 на входе а прибор для сохранения постоянного расхода теплоносителя:

G = const; Т 1 = var;

б) количественное регулирование заключается в регулировании отпуска теплоты путем изменения расхода теплоносителя при постоянной температуре на входе в установку:

G = var; Т 1 = const;

в) качественно-количественное регулирование заключается в регулировании отпуска теплоты путем одновременного изменения расхода и температуры теплоносителя:

Т 1 = var, G = var.

При автоматизации абонентских вводов основное применение в городах имеет в настоящее время центральное качественное регулирование, дополняемое в ЦТП или ИТП количественным регулированием или регулированием пропусками.

Частным случаем количественного регулирования является регулирование пропусками. В этом случае регулирование достигается путем периодического отключения абонентов.

В паровых системах теплоснабжения качественное регулирование неприемлемо ввиду того, что изменение температуры в необходимом диапазоне требует большого изменения давления. Центральное регулирование паровых систем производится, в основном, количественным методом или пропусками. Однако периодическое отключение приводит к неравномерному прогреву отдельных приборов и к заполнению системы воздухом.

Общее уравнение для регулирования отопительной нагрузки при зависимых схемах присоединения установок к тепловым сетям имеет вид:

; (4.2)

(4.3)

1. Качественное регулирование.

Дано : Q ор, Т 1р, Т 2р, G ор.

Определить : Т 1 = f 1 (t н);

Т 2 = f 2 (t н).

Решение . Из уравнений теплового баланса:

. (4.4)

Учитывая то, что = ; = ;

Получим:

. (4.5)

Коэффициент теплопередачи нагревательных приборов определяется по формуле:

; (4.6)

для радиаторов е → 0 → ;

а – постоянная для каждого типа нагревательных приборов;

m – постоянная, зависящая от типа нагревательных приборов и способа обвязки; , обычно m = 0,25 для современных нагревательных приборов.

Подставим выражение для К нп и получим:

. (4.7)

Учитывая, что для элеватора , , получим:

;

Из 1 = 2 определяем:

; (4.9)

Из 1 = 3 с учетом 4 определяем:

, ; (4.10)

; (4.11)

. (4.12)

Рис. 4.1 . График качественного регулирования

Если система отопления присоединяется непосредственно без смесителя, то коэффициент смешения U = 0, следовательно график поднимется вверх.

При воздушном отоплении коэффициент теплопередачи не зависит от перепада температур, а зависит от скорости движения теплоносителя и весовой скорости воздуха:

, (4.13)

поэтому коэффициент m = 0, U = 0, следовательно получается уравнение первой степени, на графике это прямая линия.

В независимых схемах в нагревательные приборы системы отопления вода поступает после теплообменного аппарата.

Рис. 4.2 . Незави

симая схема присоединения

системы отоп-

ления к тепло-

Расчет режима регулирования для независимой системы отопления также основан на уравнениях теплового баланса:

. (4.15)

Зависимость расхода от тепловой нагрузки описывается эмпирической формулой , где n – показатель степени, зависящий от метода регулирования:

при качественном регулировании n = 0, ;

при количественном регулировании n ≥ 1;

при качественно-количественном регулировании 0 < n < 1.

Регулирование нагрузки приводит к изменению расходов и температур теплоносителя в теплообменнике. При нерасчетных условиях обычно известны температуры теплоносителей на входе в установку и неизвестны на выходе. Поэтому уравнение тепловой нагрузки теплообменника неудобно для расчетов, т.к. неизвестно выражение , которое определяется методом подбора.

По методике Е.Я.Соколова расчет теплообменных аппаратов облегчается при использовании так называемых тепловых характеристик теплообменников, когда:

, (4.16)

где ε – безразмерная удельная тепловая нагрузка (коэффициент эффективности);

G м – меньшее значение расхода из теплообменных средств;

Максимальная разность температур между греющей и нагреваемой средой.

Для водоводяных теплообменников (при противотоке):

, (4.17)

где Ф – параметр подогревателя; для данного подогревателя Ф = const при любом режиме.

; (4.18)

При качественном регулировании , т.к. . Тогда:

2. Качественно-количественное регулирование.

Дано : , , зависимость расхода от отопительной нагрузки выражается уравнением , где n – коэффициент, позволяющий устранить влияние переменного гравитационного давления на разрегулировку системы: 0,33 – для двухтрубных систем отопления, 0,2-0,25 – для однотрубных систем отопления.

Определить : Т 1 , Т 2 , G о = f i (t н).

Решение . Задаваясь , определяем , затем определяем Т 1 и Т 2:

; (4.21)

Из 1 = 3 с учетом 4 получим:

; (4.22)

Из 1 = 2 с учетом 4 и 5 получим:

Если m = 0,25, то , (4.24)

т.е. G о и G тс изменяется по гравитационному закону.

Рис. 4.3 . График регулирования тепловой нагрузки: 1 – качественно-

количественный; 2 - качественный

Осуществить плавное изменение расхода воды практически невозможно. В современных насосах глубокое изменение расхода происходит за счет изменения скорости вращения двигателя и соответственно изменения числа оборотов.

В этом случае применяется ступенчатое регулирование (рис. 4.4 ). В результате отопительный сезон делится на несколько диапазонов, в каждом из которых поддерживается постоянный расход воды.

В холодный период система работает с расчетным расходом воды. При увеличении температуры наружного воздуха расход воды уменьшается. Переменный расход обеспечивается работой нескольких насосов различной производительности. Ступенчатое изменение расхода воды приводит к ступенчатому изменению температуры. При уменьшении расхода воды Т 1 чуть выше, а Т 2 чуть ниже, чем при отопительном графике.

Расход воды в системе может быть уменьшен на 30-40 % . Исследования показали, что в этом случае разрегулировка вертикальная незначительна.

Рис. 4.4 . График ступенчатого регулирования тепловой нагрузки

Поэтому расход воды в системе уменьшают до ; далее он постоянен. Число ступеней при выбирают в зависимости от оборудования.

Ступенчатое регулирование тепловой нагрузки позволяет уменьшить расход электроэнергии на перекачку теплоносителя, но при увеличении температуры в сети уменьшается отбор пара в турбине.

3. Количественное регулирование.

Дано : Т 1 = const.

Определить : Т 2 , G о = f i (t н).

Регулирование поверхностью нагрева происходит за счет подтопления нагревательных приборов.

Решение.

Из 1 = 2 получим: (4.26)

Из 1 = 3 с учетом 4 получим:

,

где . (4.27)

Уравнения 4 и 5 справедливы при Т 2 ≥ t в.

При уменьшении нагрузки и уменьшении расхода воды температура обратного трубопровода сети стремится к температуре t в. Дальнейшее понижение теплоотдачи достигается заполнением части нагревательного прибора водой с температурой равной температуре внутреннего воздуха t в.

Недостатки: разрегулировка системы отопления из-за изменения расхода воды.

Достоинства: сокращение электроэнергии на перекачку теплоносителя. Этим пользуются при присоединении систем отопления по независимой схеме или через смесительные подстанции. В этом случае в системе отопления сохраняется режим качественного регулирования в течение всего отопительного сезона. При уменьшении расхода сетевой воды насосы увеличивают подачу воды из обратки, следовательно нет разрегулировки.

Просматривая статистику посещения нашего блога я заметил, что очень часто фигурируют такие поисковые фразы как, например, «какая должна быть температура теплоносителя при минус 5 на улице?» . Решил выложить старый график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха . Хочу предупредить тех, кто на основании этих цифр попытается выяснить отношения с ЖЭУ или тепловыми сетями: отопительные графики для каждого отдельного населенного пункта разные (я писал об этом в статье ). По данному графику работают тепловые сети в Уфе (Башкирия).

Так же хочу обратить внимание на то, что регулирование происходит по среднесуточной температуре наружного воздуха, так что, если, например, на улице ночью минус 15 градусов, а днем минус 5 , то температура теплоносителя будет поддерживаться в соответствии с графиком по минус 10 о С .

Как правило, используются следующие температурные графики: 150/70 , 130/70 , 115/70 , 105/70 , 95/70 . Выбирается график в зависимости от конкретных местных условий. Домовые системы отопления работают по графикам 105/70 и 95/70. По графикам 150, 130 и 115/70 работают магистральные тепловые сети.

Рассмотрим пример как пользоваться графиком. Предположим, на улице температура «минус 10 градусов». Тепловые сети работают по температурному графику 130/70 , значит при -10 о С температура теплоносителя в подающем трубопроводе тепловой сети должна быть 85,6 градусов, в подающем трубопроводе системы отопления — 70,8 о С при графике 105/70 или 65,3 о С при графике 95/70. Температура воды после системы отопления должны быть 51,7 о С.

Как правило, значения температуры в подающем трубопроводе тепловых сетей при задании на теплоисточник округляются. Например, по графику должно быть 85,6 о С, а на ТЭЦ или котельной задается 87 градусов.


Температура
наружного
воздуха
Тнв, о С
Температура сетевой воды в подающем трубопроводе
Т1, о С
Температура воды в подающем трубопроводе системы отопления
Т3, о С
Температура воды после системы отопления
Т2, о С
150 130 115 105 95
8 53,2 50,2 46,4 43,4 41,2 35,8
7 55,7 52,3 48,2 45,0 42,7 36,8
6 58,1 54,4 50,0 46,6 44,1 37,7
5 60,5 56,5 51,8 48,2 45,5 38,7
4 62,9 58,5 53,5 49,8 46,9 39,6
3 65,3 60,5 55,3 51,4 48,3 40,6
2 67,7 62,6 57,0 52,9 49,7 41,5
1 70,0 64,5 58,8 54,5 51,0 42,4
0 72,4 66,5 60,5 56,0 52,4 43,3
-1 74,7 68,5 62,2 57,5 53,7 44,2
-2 77,0 70,4 63,8 59,0 55,0 45,0
-3 79,3 72,4 65,5 60,5 56,3 45,9
-4 81,6 74,3 67,2 62,0 57,6 46,7
-5 83,9 76,2 68,8 63,5 58,9 47,6
-6 86,2 78,1 70,4 65,0 60,2 48,4
-7 88,5 80,0 72,1 66,4 61,5 49,2
-8 90,8 81,9 73,7 67,9 62,8 50,1
-9 93,0 83,8 75,3 69,3 64,0 50,9
-10 95,3 85,6 76,9 70,8 65,3 51,7
-11 97,6 87,5 78,5 72,2 66,6 52,5
-12 99,8 89,3 80,1 73,6 67,8 53,3
-13 102,0 91,2 81,7 75,0 69,0 54,0
-14 104,3 93,0 83,3 76,4 70,3 54,8
-15 106,5 94,8 84,8 77,9 71,5 55,6
-16 108,7 96,6 86,4 79,3 72,7 56,3
-17 110,9 98,4 87,9 80,7 73,9 57,1
-18 113,1 100,2 89,5 82,0 75,1 57,9
-19 115,3 102,0 91,0 83,4 76,3 58,6
-20 117,5 103,8 92,6 84,8 77,5 59,4
-21 119,7 105,6 94,1 86,2 78,7 60,1
-22 121,9 107,4 95,6 87,6 79,9 60,8
-23 124,1 109,2 97,1 88,9 81,1 61,6
-24 126,3 110,9 98,6 90,3 82,3 62,3
-25 128,5 112,7 100,2 91,6 83,5 63,0
-26 130,6 114,4 101,7 93,0 84,6 63,7
-27 132,8 116,2 103,2 94,3 85,8 64,4
-28 135,0 117,9 104,7 95,7 87,0 65,1
-29 137,1 119,7 106,1 97,0 88,1 65,8
-30 139,3 121,4 107,6 98,4 89,3 66,5
-31 141,4 123,1 109,1 99,7 90,4 67,2
-32 143,6 124,9 110,6 101,0 94,6 67,9
-33 145,7 126,6 112,1 102,4 92,7 68,6
-34 147,9 128,3 113,5 103,7 93,9 69,3
-35 150,0 130,0 115,0 105,0 95,0 70,0

Прошу не ориентироваться на диаграмму в начале поста — она не соответствует данным из таблицы.

Расчет температурного графика

Методика расчета температурного графика описана в справочнике (Глава 4, п. 4.4, с. 153,).

Это довольно трудоемкий и долгий процесс, так как для каждой температуры наружного воздуха нужно считать несколько значений: Т 1 , Т 3 , Т 2 и т. д.

К нашей радости у нас есть компьютер и табличный процессор MS Excel. Коллега по работе поделился со мной готовой таблицей для расчета температурного графика. Её в свое время сделала его жена, которая трудилась инженером группы режимов в тепловых сетях.

Для того, чтобы Excel расчитал и построил график достаточно ввести несколько исходных значений:

  • расчетная температура в подающем трубопроводе тепловой сети Т 1
  • расчетная температура в обратном трубопроводе тепловой сети Т 2
  • расчетная температура в подающем трубопроводе системы отопления Т 3
  • Температура наружного воздуха Т н.в.
  • Температура внутри помещения Т в.п.
  • коэффициент «n » (он, как правило, не изменен и равен 0,25)
  • Минимальный и максимальный срез температурного графика Срез min, Срез max .

Все. больше ничего от вас не требуется. Результаты вычислений будут в первой таблице листа. Она выделена жирной рамкой.

Диаграммы также перестроятся под новые значения.

Также таблица считает температуру прямой сетевой воды с учетом скорости ветра.

Для нормального функционирования технологических процессов, комфортного пребывания человека в помещениях должны обеспечиваться условия в соответствии с технологическими и санитарно-гигиеническими нормами. Комфорт в помещениях обеспечивают инженерные системы отопления, вентиляции и кондиционирования воздуха, подачу теплоты, в которые осуществляют водяные централизованные системы теплоснабжения.

Тепловой баланс помещений должен поддерживаться в течение всего отопительного сезона и потребители должны получать требуемое количество теплоты, независимо от того какой способ регулирования применяется на источнике теплоты, как спроектированы тепловые магистрали и какова тепловая защита здания. В городах и жилых поселках России основными потребителями тепловой энергии от систем централизованного теплоснабжения являются системы отопления жилых, административных и общественных зданий. Промышленные объекты также потребляют тепловую энергию для отопления из централизованных систем.

Большинство крупных водяных систем теплоснабжения спроектированы и построены в 1950-1970 годах. В системах теплоснабжения жилых районов городов, например, города Липецка и др., в системах теплоснабжения предприятий, например, ОАО «НЛМК», ОАО «Свободный Сокол» регулирование отпуска теплоты преимущественно центральное качественное по отопительной нагрузке. Проектный график температур сетевой воды 150/70 °C, системы отопления зданий подключены к тепловым сетям по гидравлически зависимой схеме.

Сложившиеся в последние годы условия эксплуатации систем теплоснабжения существенно отличаются от проектных. Строительство новых зданий, реконструкция действующих, как гражданских, так и промышленных в большинстве случаев идет без существенной реконструкции действующих инженерных сетей жизнеобеспечения.

Реконструируемые и вновь строящиеся объекты интенсивно оснащаются автоматизированными тепловыми пунктами. Оснащение зданий и сооружений пунктами регулирования отпуска теплоты не исключает центральное качественное регулирование, а только дополняет его абонентским. Абонентское регулирование, как правило, предусматривает либо количественное, либо количественно-качественное изменение расходов тепловой энергии. В результате ввода таких объектов в эксплуатацию, в период наружных температур от температуры начала отопительного сезона до температуры точки излома графика температур, в водяных тепловых сетях происходит заметное изменение расходов сетевой воды. Изменение расходов теплоносителя в сети тем существеннее, чем выше доля объектов с автоматизированными абонентскими вводами. Колебания расходов воды приводят к гидравлической разрегулировке водяной тепловой сети.

Тепловой баланс помещений должен поддерживаться в течение всего отопительного сезона и потребители должны получать требуемое количество теплоты, независимо от способа регулирования.

Одновременно с вновь вводимыми в эксплуатацию зданиями действующие системы теплоснабжения обеспечивают тепловой энергией множество зданий и сооружений, в которых полностью отсутствует какое-либо абонентское дорегулирование отпуска теплоты. Подача энергии в системы отопления в период наружных температур выше точки излома графика осуществляется теплоносителем с температурой превышающей требуемые значения.

Наличие такого конгломерата объектов, подключенных к единой централизованной системе водяного теплоснабжения, не позволяет централизованно осуществлять экономически выгодное и энергетически оправданное регулирование отпуска теплоты по отопительной нагрузке зданий и приводит к перерасходам тепловой энергии.

В последние годы предприятия, вырабатывающие тепловую энергию под предлогом экономии топлива, снижения потерь в сетях, либо по другим причинам прибегают к снижению расчетной температуры сетевой воды. Температуру понижают от 150 °C до 140, 130 °C и ниже, как в периоды резкого похолодания, так и в течение отопительного периода, то есть, проводят срезку температурного графика или переходят на пониженный температурный график. Например, такое предприятие как ОАО «Новолипецкий металлургический комбинат» (ОАО «НЛМК») получает тепловую энергию от собственной ТЭЦ и ТЭЦ «Территориальная генерирующая компания № 4» (ТГК-4) и работает по температурному графику 105/70 °C, 130/70 °C. Липецкий металлургический завод «Свободный Сокол» получает теплоту от собственной ТЭЦ и котельной Липецкой городской энергетической компании (ЛГЭК) (115/70 °C), завод «Центролит» — от промышленной котельной (115/70 °С). Применение «срезки» участилось в последние два-три года и связано с массовым внедрением в системах отопления зданий трубопроводов из полимеров при их реконструкции, а также новом строительстве. В результате «срезки» и перехода на пониженный температурный график происходит снижение температурного напора теплоносителя, что приводит к «недоподаче» необходимого количества теплоты в системы отопления зданий и сооружений, спроектированных на более высокие температуры теплоносителя.

Поставщики тепловой энергии «недоподачу» теплоты вследствие понижения температурного напора пытаются компенсировать увеличением расхода теплоносителя, включая в работу дополнительные насосные группы. Применяемая температурная «срезка» при той или иной температуре наружного воздуха сопровождается разовым увеличением расхода сетевой воды для всего диапазона наружных температур от температуры срезки до расчетной температуры на отопление.

Перерасход воды в сетях в таких случаях достигает 40-50 % от проектного расхода. Однако увеличением расхода не всегда удается восполнить дефицит теплоты. Повышенный расход сетевой воды нарушает стабильный гидравлический режим системы и приводит к разрегулировке тепловой сети. Качество отпускаемого тепла в таких случаях значительно отличается от нормативного. Срезка температурного графика сокращает период времени в течение отопительного сезона, когда осуществляется централизованное качественное регулирование.

Таким образом, при продолжительности отопительного сезона около 6 месяцев в году центральное качественное регулирование осуществляется 2-4 месяца, и 2-4 месяца в течение отопительного сезона выпадают из какого-либо регулирования.

Оценка влияния отсутствия абонентского дорегулирования и температурной «срезки» на продолжительность центрального качественного регулирования в течение отопительного сезона проведена для климатических условий города Липецка на примерах «срезки» температурного графика 150/70 °C до 130, 115 и 95 °C.

Только для 51,4 % отпускаемого количества теплоты в течение всего отопительного периода применяется центральное качественное регулирование по отопительной нагрузке. Абонентскому регулированию, либо его отсутствию подвержено 27,6 % отпускаемого количества теплоты и отсутствию какого-либо регулирования в результате проводимой «срезки» — 21 %.

Для условий «срезки» с 150/70 °C на 130 °C центральному качественному регулированию подвержено 68,9 % отпускаемой в течение отопительного сезона теплоты. Для «срезки» со 150 °C на 115 °C — 60,3 % и для условий «срезки» на 95 °C — 35,8 % отпускаемой тепловой энергии.

Таким образом, при продолжительности отопительного сезона около 6 месяцев в году центральное качественное регулирование осуществляется два-четыре месяца, и два-четыре месяца в течение отопительного сезона выпадают из какого-либо регулирования. Проводимая «срезка» температурного графика с последующим увеличением расхода сетевой воды и абонентское дорегулирование у потребителей нарушают стабильный гидравлический режим тепловых сетей и приводят к его разрегулировке.

Чтобы обеспечить требуемым количеством тепловой энергии здания и сооружения при текущих наружных температурах воздуха в течение всего отопительного сезона предлагается способ теплоснабжения потребителей с периодической максимальной подачей теплоты. Снабжение тепловой энергией потребителей осуществляется по нескольким тепломагистралям, оснащенным запорной арматурой.

Известно, что использование теплоаккумулирующей способности зданий позволяет проводить регулирование отпуска теплоты на отопление не по текущей температуре наружного воздуха, а по средней величине наружной температуры за некоторый период, с соответствующим сдвигом времени .

Организация подачи теплоты основана на неизменяющемся гидравлическом режиме водяной тепловой сети и на способности зданий и сооружений аккумулировать тепловую энергию .

На источнике теплоты имеются: теплоприготовительная установка, коллектор охлажденной воды, где смешивают теплоноситель, поступающий из обратных трубопроводов отдельных магистралей, коллектор горячей воды, запорная арматура.

Предлагаемый способ теплоснабжения потребителей с периодической максимальной подачей теплоты заключается в следующем. Сетевой насос обеспечивает стабильный гидравлический режим во всей системе. Теплоноситель с повышенным температурным потенциалом поступает из теплоприготовительной установки (ТПУ) в одну из отдельных магистралей в течение определенного (первого) расчетного периода времени. Расход и температура теплоносителя поддерживаются постоянными, а в остальные магистрали направляют расходы сетевой воды, минуя теплоприготовительную установку по обводному трубопроводу. Теплоноситель поступает в другие магистрали и имеет температуру смеси, образованной в коллекторе охлажденной воды (КОВ). С течением времени (первый расчетный период) температура смеси понизится, следовательно, понизится температура внутреннего воздуха в отапливаемых помещениях. Сигналом для переключения запорной арматуры служит температура внутреннего воздуха у потребителей, и в следующий расчетный период, уже в другой район поступает теплоноситель от источника с повышенной температурой и т.д.

Происходит периодическое повышение и понижение температур теплоносителя в подающем и обратном трубопроводах каждой из магистралей. Система, используя способность зданий и сооружений в течение определенного времени накапливать и отдавать тепловую энергию, периодически подает потребителям несколько завышенное количество теплоты.

Таким образом, происходит периодическое повышение и понижение температур теплоносителя в подающем и обратном трубопроводах каждой из магистралей. Система, используя способность зданий и сооружений в течение определенного времени накапливать и отдавать тепловую энергию, периодически подает потребителям несколько завышенное количество теплоты. В предлагаемом способе подачи теплоты происходит периодическое повышение и понижение температуры теплоносителя при подаче теплоты по отдельным тепломагистралям в теплоснабжаемые районы (ТР) при стабильном гидродинамическом режиме системы.

Предлагаемый способ теплоснабжения потребителей с периодической максимальной подачей теплоты в централизованных системах теплоснабжения позволит создать стабильный гидравлический режим в водяных сетях и обеспечит регулирование отпуска теплоты в течение всего отопительного сезона.

1. Соколов Е.Я. Теплофикация и тепловые сети. — М.: Изд-во МЭИ, 2001.

2. Стерлигов В.А., Мануковская Т.Г., Логинов В.В., Ермаков О.Н., Крамченков Е.М. Способ снабжения тепловой энергией потребителей в централизованных системах. Патент на изобр. КИ № 2334173 С1, Р24Б 3/02 (2006.01).



Понравилась статья? Поделитесь ей