Контакты

Уравнение динамики для системы материальных точек. Основное уравнение динамики. Общее уравнение динамики

Введение

В кинематике рассматривается описание простейших типов механических движений. При этом не затрагивались причины вызывающие изменения положения тела относительно других тел, а систему отсчета выбирается из соображений удобства при решении той или иной задачи. В динамике, прежде всего, представляют интерес причины, вследствие которых некоторые тела начинают двигаться относительно других тел, а также факторы, обуславливающие появления ускорения. Однако законы в механике, строго говоря, в разных системах отсчета имеют различный вид. Установлено, что существуют такие системы отсчета, в которых законы и закономерности не зависят от выбора системы отсчета. Такие системы отсчета получили название инерциальные системы (ИСО). В этих системах отсчета величина ускорения зависит только действующих сил и не зависит от выбора системы отсчета. Инерциальной системой отсчета является гелиоцентрическая система отсчета , начало отсчета которой находится в центре Солнца. Системы отсчета, движущиеся равномерно прямолинейно относительно инерциальной являются также инерциальными, а системы отсчета движущиеся с ускорением относительно инерциальной системы являются неинерциальными . По этим причинам поверхности земли, строго говоря, является неинерциальной системой отсчета. Во многих задач, систему отсчета, связанную с Землей, с хорошей степенью точности можно считать инерциальной.

Основные законы динамики в инерциальных и неинерциальных

Системах отсчета

Способность тела сохранять состояние равномерного прямолинейного движения или покоится в ИСО, называется инертностью тела . Мерой инертности тела является масса . Масса величина скалярная, в системе СИ измеряется в килограммах (кг). Мерой взаимодействия является величина, называемой силой . Сила– величина векторная, в системе СИ измеряется в Ньютонах (Н).

Первый закон Ньютона. В инерциальных системах отсчета точка движется равномерно прямолинейно или покоится в том случае, если сумма всех сил действующих на нее равна нулю, т.е.:

где – силы, действующие на данную точку.

Второй закон Ньютона. В инерциальных системах тело движется с ускорением, если сумма всех сил, действующих на него не равна нулю, причем произведение массы тела на его ускорение равно сумме этих сил, т.е.:

Третий закон Ньютона. Силы, с которыми тела действуют друг на друга, равны по величине и противоположны по направлению, т.е.: .

Силы, как меры взаимодействия, всегда рождаются парами.

Для успешного решения большинства задач с использованием законов Ньютона необходимо придерживаться некоторой последовательности действия (своего рода алгоритма).

Основные пункты алгоритма.

1. Проанализировать условие задачи и выяснить, с какими телами взаимодействует рассматриваемое тело. Исходя из этого, определить количество сил, действующих на рассматриваемое тело. Допустим, число сил, действующих на тело, равно . Затем выполнить схематически правильный рисунок, на котором построить все силы, действующие на тело.

2. Используя условие задачи, определить направление ускорения рассматриваемого тела, и изобразить вектор ускорения на рисунке.

3. Записать в векторной форме второй закон Ньютона, т.е.:

где силы, действующие на тело.

4. Выбрать инерциальную систему отсчета. Изобразить на рисунке прямоугольную декартову систему координат, ось ОХ которой направить по вектору ускорения, ось ОY и ОZ направить перпендикулярно оси ОХ.

5. Воспользовавшись основным свойством векторных равенств, записать второй закон Ньютона для проекций векторов на оси координат, т.е.:

6. Если в задаче кроме сил и ускорений требуется определить координаты и скорость, то кроме второго закона Ньютона необходимо использовать и кинематические уравнения движения. Записав систему уравнений, необходимо обратить внимание на то, чтобы число уравнений равнялось числу неизвестных в данной задаче.

Рассмотрим неинерциальную систему отсчета вращающуюся с постоянной угловой скоростью вокруг оси, перемещающейся поступательно со скоростью относительно инерциальной системы. В этом случае ускорение точки в инерциальной системе () связано с ускорением в неинерциальной системе () соотношением:

где – ускорением неинерциальной системы относительно инерциальной системы , линейная скорость точки в неинерциальной системе. Из последнего соотношения вместо ускорения подставим в равенство (1), получим выражение:

Это соотношение называется вторым законом Ньютона в неинерциальной системе отсчета.

Силы инерции. Введем обозначения:

1. – поступательная сила инерции ;

2. сила Кориолиса ;

3 центробежная сила инерции .

В задачах поступательная сила инерции изображается против вектора ускорением поступательного движения неинерциальной системы отсчета (), центробежная сила инерции –– от центра вращения по радиусу (); направление силы Кориолиса определяется по правилу буравчика для векторного произведения векторов .

Строго говоря, силы инерции не являются в полном смысле силами, т.к. для них не выполняется третий закон Ньютона, т.е. они не являются парными.

Силы

Сила всемирного тяготения. Сила всемирного тяготения возникает в процессе взаимодействия между телами, обладающими массами, и вычисляется из соотношения:

. (4)

Коэффициент пропорциональности получил название гравитационной постоянной . Его величина в системе СИ равна .

Сила реакции. Силы реакции возникают при взаимодействии тела с различными конструкциями, ограничивающими его положение в пространстве. Например, на тело, подвешенное на нити, действует сила реакции, называемая обычно силой натяжения. Сила натяжения нити направлена всегда вдоль нити. Формулы для вычисления ее величины нет. Обычно величину ее находят либо из первого, либо из второго закона Ньютона. К силам реакции также относят силы, действующие на частицу на гладкой поверхности. Ее называют нормальной силой реакции , обозначают . Сила реакции всегда направлена перпендикулярно рассматриваемой поверхности . Со стороны тела на гладкую поверхность действует сила, называемая силой нормального давления (). По третьему закону Ньютона сила реакции равна по величине силе нормального давления, но векторы этих сил противоположны по направлению.

Сила упругости. Силы упругости возникают в телах в том случае, если тела деформированы, т.е. если изменена форма тела или его объем. При прекращении деформации силы упругости исчезают. Следует заметить, что, хотя силы упругости возникают при деформациях тел, не всегда деформация приводит к возникновению сил упругости. Силы упругости возникают в телах, способных восстанавливать свою форму после прекращения внешнего воздействия. Такие тела, и соответствующие им деформации, называются упругими . При пластической деформации изменения полностью не исчезают после прекращения внешнего воздействия. Ярким примером проявления сил упругости могут служить силы, возникающие в пружинах, подверженных деформации. Для упругих деформаций, возникающих в деформированных телах, сила упругости всегда пропорциональна величине деформации, т.е.:

, (5)

где коэффициент упругости (или жесткости) пружины, вектор деформации пружины.

Данное утверждение получило название закона Гука.

Сила трения. При движении одного тела по поверхности другого возникают силы, препятствующие этому движению. Такие силы принято называть силами трения скольжения . Величина силы трения покоя может изменяться в зависимости от приложенной внешней силы. При некотором значении внешней силы сила трения покоя достигает максимального значения. После этого начинается скольжение тела. Экспериментально установлено, что сила трения скольжения прямо пропорциональна силе нормального давления тела на поверхность. Согласно третьему закону Ньютона сила нормального давления тела на поверхность всегда равна силе реакции, с которой сама поверхность действует на движущееся тело. С учетом этого формула для вычисления величины силы трения скольжения имеет вид:

, (6)

где величина силы реакции; коэффициент трения скольжения. Сила трения скольжения, действующая на движущееся тело, всегда направлена против его скорости, вдоль соприкасающихся поверхностей.

Сила сопротивления. При движении тел в жидкостях и газах возникают также силы трения, но они существенно отличаются от сил сухого трения. Эти силы называются силами вязкого трения , или силы сопротивления . Силы вязкого трения возникают только при относительном движении тел. Силы сопротивления зависят от многих факторов, а именно: от размеров и формы тел, от свойств среды (плотности, вязкости), от скорости относительного движения. При малых скоростях сила сопротивления прямо пропорционально зависит от скорости движения тела относительно среды, т.е.:

. (7)

При больших скоростях сила сопротивления пропорциональна квадрату скорости движения тела относительно среды, т.е.:

, (8)

где некоторые коэффициенты пропорциональности, называемые коэффициентами сопротивления .

Основное уравнение динамики

Основное уравнение динамики материальной точки представляет собой не что иное, как математическое выражение второго закона Ньютона:

. (9)

В инерциальной системе отсчета в сумму всех сил входят только силы, являющиеся мерами взаимодействий, в неинерциальных системах в сумму сил входят силы инерции.

С математической точки зрения соотношение (9) представляет собой дифференциальное уравнение движения точки в векторном виде. Его решение –– есть основная задача динамики материальной точки.

Примеры решения задач

Задача №1. На лист бумаги помещен стакан. С каким ускорением надо привести в движение лист, чтобы выдернуть его из-под стакана, если коэффициент трения между стаканом и листом бумаги равен 0,3?

Предположим, что при некоторой силе , действующей на лист бумаги, стакан движется совместно с листом. Изобразим отдельно силы, действующие на стакан массой . На стакан действуют следующие тела: Земля с силой тяжести , лист бумаги с силой реакции , лист бумаги с силой трения , направленной по скорости движения стакана. Движение стакана является равноускоренным, следовательно, вектор ускорения направлен по скорости движения стакана.


Изобразим вектор ускорения стакана на рисунке. Запишем второй закон Ньютона в векторной форме для сил, действующих на стакан:

.

Направим ось ОХ по вектору ускорения стакана, а ось OY ¾ вертикально вверх. Запишем второй закон Ньютона в проекциях на эти оси координат, получим следующие уравнения:

(1.1)

При увеличении силы , действующей на лист бумаги, возрастает величина силы трения, с которой лист бумаги действует на стакан. При некотором значении силы величина силы трения достигает своего максимального значения, равного по величине силе трения скольжения. С этого момента начинается скольжение стакана относительно поверхности бумаги. Предельное значение силы трения связано с силой реакции, действующей на стакан следующим соотношением:

Из равенства (1.2) выражаем величину силы реакции, а затем подставляем в последнее соотношение, имеем . Из полученного соотношения находим величину силы трения и поставляем в равенство (1.1), получим выражение для определения максимального ускорения стакана:

Подставив числовые значения величин в последнее равенство, найдем величину максимального ускорения стакана:

.

Полученная величина ускорения стакана равна минимальному ускорению листа бумаги, при котором его можно «выдернуть» из-под стакана.

Ответ: .

Изобразим все силы, действующие на тело. Кроме внешней силы на тело действует Земля с силой тяжести , горизонтальная поверхность с силой реакции и силой трения , направленной против скорости движения тела. Тело движется равноускоренно, и, следовательно, вектор его ускорения направлен по скорости движения. Изобразим вектор на рисунке. Выбираем систему координат так, как показано на рисунке. Записываем второй закон Ньютона в векторной форме:

.

Используя основное свойство векторных равенств, запишем уравнения для проекций векторов, входящих в последнее векторное равенство:

Записываем соотношение для силы трения скольжения

Из равенства (2.2) находим величину силы реакции

Из полученного выражения подставим в равенство (2.3) вместо величины силы реакции , получим выражение

Подставив полученное выражение для силы трения в равенство (2.1), будем иметь формулу для вычисления ускорения тела:

В последнюю формулу подставим числовые данные в системе СИ, найдем величину ускорения движения груза:

Ответ: .

Для минимальной величины силы определим направление силы трения, которая действует на покоящийся брусок. Представим, что сила меньше той минимальной силы, достаточной для того, чтобы тело оставалось в покое. В этом случае тело будет двигаться вниз, и, сила трения , приложенная к нему, будет направлена вертикально вверх. Для того чтобы остановить тело, нужно увеличить величину приложенной силы . Кроме того, на данное тело действует Земля с силой тяжести , направленной вертикально вниз, а также стенка с силой реакции , направленной горизонтально влево. Изобразим на рисунке все силы, действующие на тело. Возьмем прямоугольную декартову систему координат, оси которой направим так, как показано на рисунке. Для покоящегося тела запишем первый закон Ньютона в векторной форме:

.

Для найденного векторного равенства запишем равенства для проекций векторов на оси координат, получим следующие уравнения:

При минимальном значении внешней силы величина силы трения покоя достигает максимального значения, равного величине силы трения скольжения:

Из равенства (3.1) находим величину силы реакции , и подставляем в равенство (3.3), получим следующее выражение для силы трения:

.

Подставим вместо силы трения в равенство (3.2) правую часть данного соотношения, получим формулу для вычисления величины приложенной силы :

Из последней формулы находим величину силы :

.

Ответ: .

Изобразим все силы, действующие на шарик, движущийся в воздухе вертикально вниз. На него действует Земля с силой тяжести и воздух с силой сопротивления . Изобразим рассмотренные силы на рисунке. В начальный момент времени равнодействующая всех сил имеет максимальное значение, так как скорость шарика равна нулю и сила сопротивления также равна нулю. В этот момент шарик имеет максимальное ускорение, равное . По мере движения шарика скорость его движения увеличивается, и, следовательно, сила сопротивления воздуха возрастает. В некоторый момент времени сила сопротивления достигает величины, равной величине силы тяжести. С этого момента времени шарик движется равномерно. Запишем первый закон Ньютона в векторной форме для равномерного движения шарика:

.

Направим ось OY вертикально вниз. Запишем для данного векторного равенства равенство для проекций векторов на ось OY:

. (4.1)

Сила сопротивления зависит от площади поперечного сечения шарика и величины его скорости движения следующим образом:

, (4.2)

где коэффициент пропорциональности, называемый коэффициентом сопротивления.

Из равенств (4.1) и (4.2) вытекает следующее соотношение:

. (4.3)

Выразим массу шарика через его плотность и объем, а объем в свою очередь, - через радиус шарика:

. (4.4)

Из данного выражения находим массу и подставляем в равенство (4.3), получим следующее равенство:

. (4.5)

Выражаем площадь поперечного сечения шарика через его радиус:

С учетом соотношения (4.6) равенство (4.5) примет следующий вид:

.

Обозначим как радиус первого шарика; как радиус второго шарика. Запишем формулы для скоростей установившегося движения первого и второго шариков:

Из полученных равенств находим отношение скоростей:

.

Из условия задачи отношение радиусов шариков равно двум. Используя это условие, находим отношение скоростей:

.

Ответ: .

На тело, движущееся вверх вдоль наклонной плоскости, действуют внешние тела: а) Земля с силой тяжести , направленной вертикально вниз; б) наклонная плоскость с силой реакции , направленной перпендикулярно наклонной плоскости; в) наклонная плоскость с силой трения , направленной против движения тела; г) внешнее тело с силой , направленной вверх вдоль наклонной плоскости. Под действием этих сил тело движется равноускоренно вверх по наклонной плоскости, и, следовательно, вектор ускорения направлен по перемещению тела. Изобразим вектор ускорения на рисунке. Запишем второй закон Ньютона в векторной форме:

.

Выберем прямоугольную декартову систему координат, ось ОХ которой направим по ускорению движения тела, а ось OY - перпендикулярно наклонной плоскости. Запишем второй закон Ньютона в проекциях на эти оси координат, получим следующие уравнения:

Сила трения скольжения связана с силой реакции следующим соотношением:

Из равенства (5.2) находим величину силы реакции и подставляем в равенство (5.3), имеем следующее выражение для силы трения:

. (5.4)

Подставим в равенство (5.1) вместо силы трения правую часть равенства (5.4), получим следующее уравнение для вычисления величины искомой силы:

Вычислим величину силы :

Ответ: .

Изобразим все силы, действующие на тела и на блок. Рассмотрим процесс движения тел, связанных нитью, перекинутой через блок. Нить является невесомой и нерастяжимой, следовательно, величина силы натяжения на любом участке нити будет одинаковой, т.е. и .

Перемещения тел за любые промежутки времени будут одинаковыми, и, следовательно, в любой момент времени одинаковыми будут величины скоростей и ускорений этих тел. Из того, что блок вращается без трения и является невесомым, следует, что сила натяжения нити по обе стороны блока будет одинаковой, т.е.: .

Отсюда вытекает равенство сил натяжения нити, действующей на первое и второе тело, т.е. . Изобразим на рисунке векторы ускорений первого и второго тела. Изобразим две оси ОХ. Первую ось направим вдоль вектора ускорения первого тела, вторую - вдоль вектора ускорения второго тела. Запишем второй закон Ньютона для каждого тела в проекции на эти оси координат:

Учитывая, что , и выразив из первого уравнения , подставим во второе уравнение, получим

Из последнего равенства находим величину ускорения:

.

Из равенства (1) находим величину силы натяжения:

Ответ: , .

На маленькое колечко при его вращении по окружности действуют две силы: сила тяжести , направленная вертикально вниз, и сила реакции , направленная к центру кольца. Изобразим эти силы на рисунке, а также покажем на нем траекторию движения колечка. Вектор центростремительного ускорения колечка лежит в плоскости траектории и направлен к оси вращения. Изобразим на рисунке. Запишем второй закон Ньютона в векторной форме для вращающегося колечка:

.

Выберем прямоугольную систему координат, ось ОХ которой направим по центростремительному ускорению , а ось OY - вертикально вверх вдоль оси вращения. Запишем второй закон Ньютона в проекциях на эти оси координат:

Из равенства (7.2) находим величину силы реакции и подставляем в равенство (7.1), получим выражение:

. (7.3)

Центростремительное ускорение связано с частотой вращения соотношением: , где радиус вращения маленького колечка. Подставим правую часть последнего равенства вместо в формулу (7.3), получим следующее соотношение:

. (7.4)

Из рисунка находим величину тангенса угла альфа . С учетом этого выражения равенство (7.4) примет вид:

Из последнего уравнения находим искомую высоту :

Ответ: .

На тело, вращающееся вместе с диском, действуют три силы: сила тяжести , сила реакции и сила трения , направленная к оси вращения. Изобразим все силы на рисунке. Покажем на данном рисунке направление вектора центростремительного ускорения . Записываем второй закон Ньютона в векторной форме:

.

Выберем прямоугольную декартову систему координат так, как показано на рисунке. Запишем второй закон Ньютона в проекциях на оси координат:

; (8.1)

. (8.2)

Запишем соотношение для центростремительного ускорения:

. (8.3)

Подставим правую часть равенства (8.3) вместо центростремительного ускорения в равенство (8.1), получим:

. (8.4)

Из равенства (8.4) видно, что величина силы трения прямо пропорциональна радиусу вращения , поэтому при увеличении радиуса вращения сила трения покоя увеличивается, и при некоторой величине сила трения покоя достигает максимального значения, равного силе трения скольжения ().

С учетом равенства (8.2), получим выражения для максимальной силы трения покоя:

.

Подставим правую часть полученного равенства вместо силы трения равенство (4), получим следующее соотношение:

Из данного уравнения находим предельное значение радиуса вращения:

Ответ: .

Во время полета капли на нее действует две силы: сила тяжести и сила сопротивления . Изобразим все силы на рисунке. Выберем вертикально направленную ось OY, начало отсчета которой расположим на поверхности Земли. Запишем основное уравнение динамики:

.

Спроектируем равенство на ось OY, будем иметь соотношение:

Разделим обе части последнего равенства на и одновременно умножим обе части на , учтем что , получим выражение:

Разделим обе части этого выражения на , получим соотношение:

.

Интегрируем последнее соотношением, получаем зависимость скорости от времени: .

Константу найдем из начальных условий (), получим искомую зависимость скорости от времени:

.

Определяем максимальную скорость из условия :

.

Ответ: ; .

Изобразим на рисунке силы, действующие на шайбу. Запишем второй закон Ньютона в проекциях на оси OX, OY и OZ

Т.к. , то для всей траектории движения шайбы для силы трения справедливо формула , которая, с учетом равенства для OZ, преобразуется к виду:

С учетом этого соотношения равенство для оси OX примет вид

Спроектируем второй закон Ньютона на касательную к траектории движения шайбы в рассматриваемой точке, получим соотношение:

где – величина тангенциального ускорения. Сравнивая правые части последних равенств, делаем вывод о том, что .

Поскольку и , то учетом предыдущего соотношения имеем равенство , интегрирование которого приводит к выражению , где – константа интегрирования. Подставим в последнее выражение , получим зависимость скорости от угла :

Константу определим из начальных условий (когда . ) . С учетом этого запишем окончательную зависимость

.

Минимальное значение скорости достигается тогда, когда , и вектор скорости направлен параллельно оси OX а ее величина равна .

Принцип возможных перемещений дает общий метод решения задач статики. С другой стороны, принцип Даламбера позволяет использовать методы статики для решения задач динамики. Следовательно, применяя эти два принципа одновременно, мы можем получить общий метод решения задач динамики.

Рассмотрим систему материальных точек, на которую наложены идеальные связи. Если ко всем точкам системы кроме действующих на них активных сил и реакций связей прибавить соответствующие силы инерции то согласно принципу Даламбера полученная система сил будет находиться в равновесии. Тогда, применяя к этим силам принцип возможных перемещений, получим

Но последняя сумма по условию (98) равна нулю и окончательно будет:

Из полученного результата вытекает следующий принцип Даламбера - Лагранжа: при движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю.

Уравнение (102), выражающее этот принцип, называют общим уравнением динамики. В аналитической форме уравнение (102) имеет вид

Уравнения (102) или (103) позволяют составить дифференциальные уравнения движения механической системы.

Если при этом система представляет собой совокупность каких-нибудь твердых тел, то для составления уравнений нужно к действующим на каждое тело активным еилам прибавить приложенную в любом центре силу, равную главному вектору сил инерции, и пару с моментом, равным главному моменту сил инерции относительно этого центра (или одну из этих величин, см. § 134), а затем применить принцип возможных перемещений.

Задача 173. В центробежном регуляторе, равномерно вращающемся вокруг вертикальной оси с угловой скоростью со (рис. 362), вес каждого из шаров и равен вес муфты равен Q. Пренебрегая весом стержней, определить угол а, если

Решение. Присоединяем к активным силам центробежные силы инерции (сила инерцни муфты, очевидно, будет равна нулю) и составляем общее уравнение динамики в виде (103). Тогда, вычисляя проекции всех сил на координатные оси, получим

Координаты точек приложения сил равны:

Дифференцируя эти выражения, находим:

Подставляя все найденные значения в уравнение (а), получаем

Отсюда окончательно

Так как то шары будут отклоняться, когда . С увеличением угол а растет, стремясь к 90° при

Задача 174. В подъемнике, изображенном на рис. 363, к шестерне имеющей вес и радиус инерции относительно ее оси приложен вращающий мемент М. Определить ускорение поднимаемого груза 3 весом Q, пренебрегая весом веревки и трением в осях. Барабан, на который наматывается веревка, жестко скреплен с другой шестерней; их общий вес равен , а радиус инерции относительно оси вращения Радиусы шестерен равны соответственно а радиус барабана .

Решение. Изображаем действующую на систему активную силу Q и вращающий момент М (силы работы не совершают); присоединяем к ним силу инерции груза и пары с моментами и к которым приводятся силы инерции вращающихся тел (см. § 134).

Пример решения задачи с применением общего уравнения динамики (принцип Даламбера – Лагранжа) для системы с твердыми телами, грузами, шкивами и блоком, соединенных нитями.

Содержание

Условие задачи

Механическая система состоит из однородных ступенчатых шкивов 1 и 2, обмотанных нитями, грузов 3-6, прикрепленных к этим нитям, и невесомого блока. Система движется в вертикальной плоскости под действием сил тяжести и пары сил с моментом M = 10 Н·м , приложенной к шкиву 1. Радиусы ступеней шкива 1 равны: R 1 = 0,2 м , r 1 = 0,1 м , а шкива 2 - R 2 = 0,3 м , r 2 = 0,15 м ; их радиусы инерции относительно осей вращения равны соответственно ρ 1 = 0,1 м и ρ 2 = 0,2 м .

Пренебрегая трением, определить ускорение груза 5. Веса шкивов и грузов заданы: P 1 = 40 Н , P 2 = 0 , P 3 = 0 , P 4 = 20 Н , P 5 = 30 Н , P 6 = 10 Н . Грузы, веса которых равны нулю, на чертеже не изображать.

Указание . При решении задачи использовать общее уравнение динамики (принцип Даламбера - Лагранжа) .

Решение задачи

Дано: R 1 = 0,2 м , r 1 = 0,1 м , R 2 = 0,3 м , r 2 = 0,15 м , ρ 1 = 0,1 м , ρ 2 = 0,2 м . P 1 = 40 Н , P 2 = 0 , P 3 = 0 , P 4 = 20 Н , P 5 = 30 Н , P 6 = 10 Н , M = 10 Н·м .

Найти: a 5 .

Установление кинематических соотношений

Установим кинематические соотношения. Пусть V 4 , V 5 , V 6 , a 4 , a 5 , a 6 , δS 4 , δS 5 , δS 6 - скорости, ускорения и малые перемещения грузов 4,5 и 6. Пусть ω 1 , ω 2 , ε 1 , ε 2 , δφ 1 , δφ 2 - угловые скорости, угловые ускорения и малые углы поворота шкивов 1 и 2.

Скорость движения нити между телами 2, 4 и 5:
. Отсюда .
Скорость движения нити между шкивами 1 и 2:
. Отсюда
.
Скорость движения нити между телами 1 и 6:
.

Итак, мы нашли связь между скоростями тел.
;
;
.

Поскольку ускорения - это производные скоростей по времени, ,
то дифференцируя по времени предыдущие формулы, находим связь между ускорениями:
;
;
.

Поскольку скорости - это производные от перемещений по времени, то такая же связь есть между бесконечно малыми перемещениями.
;
;
.

Активные внешние силы

Рассмотрим внешние силы, действующие на систему.
Это силы тяжести тел P 1 = 40 Н , P 4 = 20 Н , P 5 = 30 Н и P 6 = 10 Н , направленные вниз;
заданная пара сил с моментом M = 10 Н·м ;
силы давления осей N 1 , N 2 и N шкивов 1, 2 и невесомого блока;
силы реакции N 4 и N 6 , действующие на грузы со стороны поверхностей, перпендикулярные этим поверхностям.

Силы инерции

Мы будем решать эту задачу с помощью общего уравнения динамики, применяя принцип Даламбера - Лагранжа. Он заключается в том, что сначала мы вводим силы инерции. После введения сил инерции, задача динамики превращается в задачу статики. То есть нам нужно найти неизвестные силы инерции, чтобы система находилась в равновесии. Данную задачу статики мы решаем, применяя принцип Даламбера. То есть считаем, что система совершила малое перемещение. Тогда в равновесии, сумма работ всех сил, при таком перемещении, равна нулю.

Итак, на первом этапе мы вводим силы инерции . Для этого предполагаем, что система движется с некоторым, пока не определенным, ускорением. То есть шкивы 1 и 2 вращаются с угловыми ускорениями ε 1 и ε 2 , соответственно; грузы 4,5 и 6 совершают поступательное движение с ускорениями a 4 , a 5 и a 6 , соответственно. Между этими ускорениями имеются связи, которые мы нашли ранее. То есть все эти ускорения можно выразить через одно ускорение a 5 . Силы инерции определяются так, что они равны по модулю и противоположны по направлению тем силам (и моментам сил), которые, по законам динамики, создавали бы предполагаемые ускорения (при отсутствии других сил).

Определяем модули (абсолютные значения) сил и моментов инерции и выражаем их через a 5 .
Пусть - массы тел;
- момент инерции шкива 1.
Момент сил инерции, действующий на шкив 1:
.
Силы инерции, действующие на грузы 4, 5 и 6:
;
;
.

Изображаем силы инерции на чертеже учитывая, что их направления противоположны ускорениям.

Применение общего уравнения динамики

Даем системе бесконечно малое перемещение. Пусть груз 5 переместился на малое расстояние δS 5 . Тогда угол поворота δφ 1 шкива 1 и перемещения δS 4 и δS 6 грузов 4 и 6 определяются с помощью установленных ранее кинематических соотношений. Поскольку нити нерастяжимые, то они не совершают работу при таком перемещении. Это означает, что система имеет идеальные связи. Поэтому мы можем применить общее уравнение динамики:
,
согласно которому сумма работ всех активных сил и сил инерции, при таком перемещении, равна нулю.

Определение суммы работ внешних активных сил и сил инерции

Работа, которую совершает сила при перемещении точки ее приложения на малое смещение равна скалярному произведению векторов , то есть произведению модулей векторов F и ds на косинус угла между ними.

Работа, произведенная моментом сил , вычисляется аналогично:
.

Определяем работы всех активных сил и сил инерции. Поскольку центры осей шкивов 1, 2 и невесомого блока не совершают перемещений, то силы P 1 , N 1 , N 2 и N не совершают работу. Поскольку силы N 4 и N 6 перпендикулярны перемещениям грузов 4 и 6, то эти силы также не совершают работу.

Находим сумму работ остальных активных сил и сил инерции.

.
Подставляем выражения для сил инерции и применяем кинематические соотношения.

.
Сокращаем на δS 5 и преобразовываем.

.
Подставляем численные значения.

;
;


Динамика:
Аналитическая механика
§ 47. Общее уравнение динамики

Задачи с решениями

47.1 Три груза массы M каждый соединены нерастяжимой нитью, переброшенной через неподвижный блок A. Два груза лежат на гладкой горизонтальной плоскости, а третий груз подвешен вертикально. Определить ускорение системы и натяжение нити в сечении ab. Массой нити и блока пренебречь.
РЕШЕНИЕ

47.2 Решить предыдущую задачу с учетом массы блока, считая, что при движении грузов блок A вращается вокруг неподвижной оси. Масса блока сплошного однородного диска равна 2M.
РЕШЕНИЕ

47.3 Два груза массы M1 и M2 подвешены на двух гибких нерастяжимых нитях, которые навернуты, как указано на рисунке, на барабаны, имеющие радиусы r1 и r2 и насаженные на общую ось; грузы движутся под влиянием силы тяжести. Определить угловое ускорение ε барабанов, пренебрегая их массами и массой нитей.
РЕШЕНИЕ

47.4 При условии предыдущей задачи определить угловое ускорение ε и натяжения T1 и T2 нитей, принимая во внимание массы барабанов, при следующих данных: M1=20 кг, M2=34 кг, r1=5 см, r2=10 см; массы барабанов: малого 4 кг и большого 8 кг. Массы барабанов считать равномерно распределенными по их внешним поверхностям.
РЕШЕНИЕ

47.5 К системе блоков, изображенной на рисунке, подвешены грузы: M1 массы 10 кг и M2 массы 8 кг. Определить ускорение w2 груза M2 и натяжение нити, пренебрегая массами блоков.
РЕШЕНИЕ

47.6 К нижнему шкиву C подъемника приложен вращающий момент M. Определить ускорение груза A массы M1, поднимаемого вверх, если масса противовеса B равна M2, а шкивы C и D радиуса r и массы M3 каждый представляют собой однородные цилиндры. Массой ремня пренебречь.
РЕШЕНИЕ

47.7 Вал кабестана механизма для передвижения грузов радиуса r приводится в движение постоянным вращающим моментом M, приложенным к рукоятке AB. Определить ускорение груза C массы m, если коэффициент трения скольжения груза о горизонтальную плоскость равен f. Массой каната и кабестана пренебречь.
РЕШЕНИЕ

47.8 Решить предыдущую задачу с учетом массы кабестана, момент инерции которого относительно оси вращения равен J.
РЕШЕНИЕ

47.9 Груз A массы M1, опускаясь по наклонной гладкой плоскости, расположенной под углом α к горизонту, приводит во вращение посредством нерастяжимой нити барабан B массы M2 и радиуса r. Определить угловое ускорение барабана, если считать барабан однородным круглым цилиндром. Массой неподвижного блока C и нити пренебречь.
РЕШЕНИЕ

47.10 Человек толкает тележку, приложив к ней горизонтальную силу F. Определить ускорение кузова тележки, если масса кузова равна M1, M2 масса каждого из четырех колес, r радиус колес, fк коэффициент трения качения. Колеса считать сплошными круглыми дисками, катящимися по рельсам без скольжения.
РЕШЕНИЕ

47.11 Каток A массы M1, скатываясь без скольжения по наклонной плоскости вниз, поднимает посредством нерастяжимой нити, переброшенной через блок B, груз C массы M2. При этом блок B вращается вокруг неподвижной оси O, перпендикулярной его плоскости. Каток A и блок B однородные круглые диски одинаковой массы и радиуса. Наклонная плоскость образует угол α с горизонтом. Определить ускорение оси катка. Массой нити пренебречь.
РЕШЕНИЕ

47.12 Груз B массы M1 приводит в движение цилиндрический каток A массы M2 и радиуса r при помощи нити, намотанной на каток. Определить ускорение груза B, если каток катится без скольжения, а коэффициент трения качения равен fк. Массой блока D пренебречь.
РЕШЕНИЕ

47.13 Стержень DE массы M1 лежит на трех катках A, B и C массы M2 каждый. К стержню приложена по горизонтали вправо сила F, приводящая в движение стержень и катки. Скольжение между стержнем и катками, а также между катками и горизонтальной плоскостью отсутствует. Найти ускорение стержня DE. Катки считать однородными круглыми цилиндрами.
РЕШЕНИЕ

47.14 Определить ускорение груза M2, рассмотренного в задаче 47.5, с учетом массы блоков сплошных однородных дисков массы 4 кг каждый.
РЕШЕНИЕ

47.15 Груз А массы M1, опускаясь вниз, посредством нерастяжимой нити, переброшенной через неподвижный блок D и намотанной на шкив B, заставляет вал C катиться без скольжения по горизонтальному рельсу. Шкив B радиуса R жестко насажен на вал C радиуса r; их общая масса равна M2, а радиус инерции относительно оси O, перпендикулярной плоскости рисунка, равен ρ. Найти ускорение груза A. Массой нити и блока пренебречь.
РЕШЕНИЕ

47.16 Центробежный регулятор вращается вокруг вертикальной оси с постоянной угловой скоростью ω. Определить угол отклонения ручек OA и OB от вертикали, принимая во внимание только массу M каждого из шаров и массу M1 муфты C, все стержни имеют одинаковую длину l.
РЕШЕНИЕ

47.17 Центробежный регулятор вращается с постоянной угловой скоростью ω. Найти зависимость между угловой скоростью регулятора и углом α отклонения его стержней от вертикали, если муфта массы M1 отжимается вниз пружиной, находящейся при α=0 в недеформированном состоянии и закрепленной верхним концом на оси регулятора; массы шаров равны M2, длина стержней равна l, оси подвеса стержней отстоят от оси регулятора на расстоянии a; массами стержней и пружины пренебречь. Коэффициент жесткости пружины равен c.
РЕШЕНИЕ

47.18 Центробежный пружинный регулятор состоит из двух грузов A и B массы M каждый, насаженных на скрепленный со шпинделем регулятора гладкий горизонтальный стержень муфты C массы M1, тяг длины l и пружин, отжимающих грузы к оси вращения; расстояние шарниров тяг от оси шпинделя равно e; c коэффициент жесткости пружин. Определить угловую скорость регулятора при угле раствора α, если при угле α0, где α0РЕШЕНИЕ

47.19 В регуляторе четыре груза одинаковой массы M1 находятся на концах двух равноплечих рычагов длины 2l, которые могут вращаться в плоскости регулятора вокруг конца шпинделя O и образуют с осью шпинделя переменный угол φ. В точке A, находящейся от конца шпинделя O на расстоянии OA=a, со шпинделем шарнирно соединены рычаги AB и AC длины a, которые в точках B и C в свою очередь сочленены со стержнями BD и CD длины a, несущими муфту D. В точках B и C имеются ползунки, скользящие вдоль рычагов, несущих грузы. Масса муфты равна M2. Регулятор вращается с постоянной угловой скоростью ω. Найти связь между углом и угловой скоростью ω в равновесном положении регулятора.

На основании принципа Даламбера справедливы равенства:

где – активная сила; – реакция связей; – сила инерции точки (рис. 3.36).

Умножая скалярно каждое из соотношений (3.45) на возможное перемещение точки и суммируя по всем точкам системы, получим

(3.46)

Равенство (3.46) – общее уравнение динамики для механической системы с любыми связями. Если связи идеальные, то и выражение (3.46) принимает одну из форм:


Общее уравнение динамики (объединенный принцип Даламбера–Лагранжа). В любой момент движения системы с идеальными связями сумма элементарных работ всех активных сил и сил инерции точек системы равны нулю на любом возможном перемещении системы.

Обобщенные координаты

Пусть система состоит из N точек и положение ее определяется 3N координатами точек системы (рис. 3.37). На систему наложены l

голономных двухсторонних связей, уравнения которых s =1,2,…,l .

Таким образом, 3N координат связаны l уравнениями и независимых координат будет n =3N -l .

В качестве n независимых координат можно выбрать любые независимые параметры

Независимые параметры, однозначно определяющие положение системы, называют обобщенными координатами системы .

Рис. 3.37

В общем случае они являются функциями декартовых координат точек системы:

Можно выразить декартовы координаты через обобщенные координаты:

Для радиус–вектора каждой точки системы получим

Если связи стационарные, то время в (3.47) явно входить не будет. Для голономных связей вектор возможного перемещения точки можно выразить в форме:

Если связи голономные, то число независимых возможных перемещений (или вариаций ) совпадает с числом независимых обобщенных координат. Следовательно, число степеней свободы голономной системы равно числу независимых обобщенных координат этой системы, т.е. n =3N -l.

Для неголономных систем в общем случае число независимых вариаций (возможных перемещений) меньше числа обобщенных координат. Поэтому число степеней свободы неголономной системы, равное числу независимых возможных перемещений, тоже меньше числа обобщенных координат системы.



Производные обобщенных координат по времени называются обобщенными скоростями и обозначаются

Обобщенные силы

Рис. 3.38

Определение обобщенных сил . Рассмотрим голономную систему из N материальных точек, имеющую n степеней свободы и находящуюся под действием системы сил (рис. 3.38). Положение системы определяется n обобщенными координатами т.е.

Вектор возможного перемещения –

(3.48)

Вычислим сумму элементарных работ сил, действующих на систему, на возможном перемещении системы:

(3.49)

Подставляя (3.48) в (3.49) и меняя порядок суммирования, получим

(3.50)

Скалярная величина называется обобщенной силой, отнесенной к обобщенной координате q i .

Размерность обобщенной силы . Из формулы (3.50) получается размерность обобщенной силы [Q ]=[A ]/[q ]. Если обобщенная координата имеет размерность длины, то обобщенная сила имеет размерность силы [Н], если же обобщенной координатой является угол (размерность – 1), то обобщенная сила имеет размерность момента силы [Н×м].

Вычисление обобщенных сил. 1. Обобщенную силу можно вычислить по формуле, ее определяющей:

где F kx ,F yx ,F kz – проекции силы на оси координат; x k ,y yx ,z k – координаты точки приложения силы

2. Обобщенные силы являются коэффициентами при соответствующих вариациях обобщенных координат в выражении для элементарной работы (3.50):

3. Если системе сообщить такое возможное перемещение, при котором изменяется только одна обобщенная координата q j то из (3.52) имеем

Индекс q i в числителе указывает, что сумма работ вычисляется на возможном перемещении, при котором изменяется (варьируется) только координата q i .

4. Для потенциальных сил:

(3.53)

где – силовая функция.

Из выражения (3.51) с учетом равенств (3.53) следует,

Таким образом,

где потенциальная энергия системы.

3.5.6. Общее уравнение динамики в обобщенных силах.
Условия равновесия сил

Общее уравнение динамики (3.50)

Вектор возможного перемещения согласно (3.48) равен

С учетом этого выражения общее уравнение динамики принимает вид

Преобразуем его, поменяв порядок суммирования

(3.54)

Здесь – обобщенная сила активных сил, соответствующая обобщенной координате q i ; – обобщенная сила инерции, соответствующая обобщенной координате q i .Тогда уравнение (3.54) принимает вид

Приращения обобщенных координат произвольны и независимые друг от друга. Поэтому коэффициенты при них в последнем уравнении должны быть равны нулю:

(3.55)

Эти уравнения эквивалентны общему уравнению динамики.

Если силы, действующие на механическую систему эквивалентны нулю, т.е. механическая система движется равномерно прямолинейно или сохраняет состояние покоя, то силы инерции ее точек равны нулю. Следовательно, обобщенные силы инерции системы равны нулю , тогда уравнения (3.55) принимают вид

(3.56)

Равенства (3.56) выражают условия равновесия сил в обобщенных силах.

В случае консервативных сил

Следовательно, условия равновесия консервативной системы сил имеют вид



Понравилась статья? Поделитесь ей