Контакты

Нанесение лакокрасочных покрытий на металл. Технология нанесения лакокрасочных и специальных покрытий. Подготовка окрашиваемого основания

1. Подготовка поверхности производится с целью удаления дефектов поверхности, заусенцев, грата, создание требуемой шероховатости поверхности. От качества подготовки поверхности во многом зависит качество покрытия, прочность его соединения с поверхностью изделия и декоративные свойства покрытия. В ряде случаев этот этап обладает значительной трудоемкостью.

Для снижения шероховатости поверхности применяют абразивную зачистку, гидроабразивную обработку. Для удаления заусенцев и грата применяется галтовка, электрохимическая обработка и т.д.

Удаление окалины, ржавчины эффективно производится песко- и дробеструйной обработкой, зачисткой иглофрезами и т.д.

Непосредственно перед нанесением покрытия производится обезжиривание, которое проводят в щелочных растворах или в органических растворителях. Процесс обезжиривания значительно интенсифицируется при применении ванн с ультразвуковыми колебаниями растворителя.

В ряде случаев, для повышения адгезии покрытия и поверхности металлического изделия производится специальная химическая или гальваническая подготовка поверхности (фосфатирование, анодирование, оксидирование).

Для усиления защитного эффекта стальные детали перед лакокрасочным покрытием иногда покрывают цинком, кадмием или никелем.

2. Нанесение покрытия В зависимости от заданной структуры покрытия технология его нанесения может включать: грунтование, шпатлевание, шлифование шпатлевки, окрашивание, лакирование и отделку покрытия.

Грунтование производится с целью создания хорошей адгезии с покрываемой поверхностью и последующими слоями покрытия.

Шпатлевание применяется для выравнивания поверхности и имеет высокую трудоемкость как нанесения, так и последующего выравнивания шлифованием. Оно способно существенно улучшить внешний вид изделия, но снижает защитную способность покрытия, поэтому для поверхностей, находящихся в агрессивных средах, не применяется. Шпатлевание часто применяется при отделки литых корпусов машин, так как позволяет скрыть дефекты поверхности отливок и придать машине оптимальные декоративные качества.

Окрашивание может осуществляться воздушным распылением, распылением в электрическом поле, окунанием, струйным обливом, безвоздушным распылением, нанесением полимерных порошковых красок во взвешенном слое, окраской валиками или кистью.

Выбор метода окрашивания зависит от типа производства, размеров и формы заготовки.

Окрашивание распылением краски на мельчайшие частицы сжатым воздухом наиболее распространено. Позволяет наносить краску равномерно, без потеков и в труднодоступных местах сложных по форме заготовок (рис.6.2,а). Распыление краски возможно и без применения сжатого воздуха за счет ее подачи в головку под высоким давлением и диспергирования при истечении из специального сопла (рис.6.2,б). Эффективность того или иного способа зависит от вязкости наносимого состава, условий применения.

Окрашивание распылением требует применения специальных окрасочных камер (рис.6.3), оборудованных вытяжными устройствами, так как образующийся туман краски и пары растворителя токсичны и взрывоопасны.

При распылении краски в электрическом поле частицы краски, приобретая заряд в распылителе, осаждаются на заготовку, имеющую электрический заряд противоположного знака. При этом сокращаются потери краски, но возможно окрашивание только простых по форме заготовок, так как частицы краски не проникают во внутренние полости заготовки.

Если производить распыление краски в вакуумную камеру, то снижается расход краски, резко улучшаются условия труда, улучшается качество покрытия, за счет отсутствия газовых пузырей, и быстрее происходит процесс сушки покрытия. Но в этом случае возможно применение только безвоздушных распылительных головок.

Способы окрашивания обливанием или окунанием отличаются простотой, легко автоматизируются, применяются для мелких и средних деталей. При их реализации иногда возникают натеки покрытия, которые могут быть устранены интенсивными механическими воздействиями после окунания (встряхиванием, вибрацией, вращением заготовки).

В этом случае создание покрытия осуществляется за счет последующего оплавления порошка в термокамерах, потоком горячего воздуха или воздействием открытого пламени. При соответствующих размерах изделия оно может в нагретом состоянии (140…220°С помещаться в порошкообразную среду, интенсивно перемешиваемую сжатым воздухом (псевдокипящий слой). Частицы полимера плавятся на поверхности заготовки и образуют сплошную прочную пленку.

3. Сушка покрытия осуществляется в специальных камерах (рис.6.5). Источником нагрева покрытия может быть обдув горячим воздухом или облучение мощными лампами. При сушке производится удаление летучих веществ (растворителей) из красок или лаков. В некоторых случаях нагрев покрытия необходим для ускорения процессов полимеризации в покрытии, например, при нанесении эпоксидных эмалей.

4. Отделка покрытия применяется в случае особо высоких декоративных требований и включает обычно абразивную зачистку промежуточных слоев покрытия с последующим полированием лакового слоя специальными пастами. При этом используется автоматизированное оборудование, промышленные роботы или ручной механизированный инструмент.

Технология нанесения гальванических покрытий

Количество осажденного металла на участке поверхности заготовки при электрохимическом осаждении зависит от плотности тока и времени обработки. Так как плотность тока в электролите практически всегда неравномерна, что связано с различными расстояниями до разных участков заготовки от анода, повышенной напряженностью электрического поля у острых углов заготовки, рассеивающей способностью электролита, различной его температурой и концентрацией в разных участках гальванической ванны, то на поверхности заготовки толщина слоя покрытия также будет неравномерна (рис.6.6).

Поэтому на острых наружных углах заготовки происходит значительно большее осаждение покрытия (рис.6.6,б), а острые внутренние углы могут вообще оказаться не покрытыми (рис.6.6,в). Внутренние же полости изделия могут экранироваться от протекающего через электролит тока выступающими, наружными поверхностями заготовки (рис.6.6,г). Поэтому при проектировании изделия, в котором предполагаются поверхности с гальваническим покрытием, следует учитывать рекомендации специальной литературы.

Для обеспечения равномерности покрытия применяют профилированные катоды, повторяющие эквидистантно профиль заготовки и обеспечивающие равномерную плотность тока на всей покрываемой поверхности. Применяют также экранирующие аноды и катоды, вспомогательные аноды.

При разработке специальных электролитов для гальванических покрытий в их состав вводят вещества, повышающие рассеивающую способность электролита, т.е. способность обеспечить равномерную плотность тока на поверхности заготовки при различном расстоянии участков ее поверхности от анода.

При гальваническом покрытии мелких изделий их помещают в специальные барабаны с перфорированными стенками, при вращении которых в электролите изделия интенсивно перемешиваются, причем электрический ток поступает к заготовке через соседние заготовки. В этом случае также на закрытых (электрически экранированных) участках толщина покрытия может быть значительно меньше, чем на наружных поверхностях.

Технологический процесс гальванического покрытия может включать операции подготовки поверхности (механическая зачистка, обезжиривание, химическая активация), непосредственно покрытия (в случае многослойного покрытия состоящего из нескольких этапов с промежуточными промывками), операции промывки, сушки. В некоторых случаях проводится дополнительное полирование, осуществляемое механической или химической обработкой.

Таким образом, гальваническое производство требует применения множества ванн с различными электролитами, водой, находящихся при разной температуре, оснащенных нагревательными или охлаждающими устройствами.

Эти ванны располагают в требуемой технологической последовательности и оборудуют специальными транспортно-загрузочными устройствами для переноса изделия из ванны в ванну и выдержке его там требуемое время.

Все эти функции реализованы в автоматических линиях гальванического производства (рис.6.7). Следует отметить, что гальваническое производство представляет определенную экологическую опасность, что сдерживает развитие применения этого вида покрытий.

Металлизация пластмасс

В производстве бытовой техники широкое применение получили гальванические металлические покрытия пластмассовых изделий. Это связано с тем, что технологии переработки пластмасс позволяют получать сколь угодно сложные по форме изделия с низкой шероховатостью поверхности. Но такая поверхность в ряде случаев не обладает высокой износостойкостью. Кроме того, металлические покрытия в этом случае могут значительно улучшать внешний вид изделия (рис.6.8).

Нанесение металлических гальванических покрытий на не проводящие ток поверхности, возможно только после их соответствующей обработки, позволяющей создать на поверхности тонкий токопроводящий слой.

В простейшем случае (в практике старинных художественных мастерских) поверхность изделия покрывали тонким слоем графита. В настоящее время поверхность активируют, обрабатывая ее в солях металлов, которые после соответствующей обработки разлагаются, выделяя частицы металла на поверхности заготовки. Так, обработка изделия в растворе азотнокислого серебра с последующим облучением ультрафиолетовыми лучами позволяет получить на поверхности тонкую пленку серебра, на поверхность которой можно осадить гальванически требуемое покрытие.

Лазерная стереолитография

Лазерная стереолитография – технологический метод послойного изготовления моделей, практически любой формы и сложности из жидких композиций, полимеризующихся под действием лазерного излучения.

Особенностью данного процесса является использование компьютерной 3-D модели, которая может быть автоматически преобразована соответствующими программами в геометрические образы плоско -параллельных сечений с заданным шагом. Отверждение же модели производится послойно в специальной установке (рис.7.1).

Лазер 1 генерирует световой луч, который концентрируется в пятно размером 0,1 …0,2 мм оптической системой. Световое пятно может перемещаться в горизонтальной плоскости оптическим сканером 2, работающим под управлением компьютера.

В ванне 3 находится жидкий фотополимер (ФП) 4, способный затвердевать при интенсивном воздействии излучения лазера. Первое сечение заготовки 5 полимеризуется на поверхности столика 6, который подводится к поверхности жидкости так, чтобы ее слой над поверхностью столика составлял 0,1…0,2 мм. После отвердевания первого слоя стол с заготовкой опускается на величину шага между сечениями, на поверхности первого слоя появляется слой жидкости, который также засвечивается и полимеризуется. При этом слои оказываются связанными между собой в твердом состоянии. После образования последнего слоя, столик поднимается и заготовка может быть извлечена из рабочей зоны (рис.7.2).

Интересной особенностью метода является практическое отсутствие ограничений на получаемую форму изделия. Так можно образовать в изделии замкнутые полости любой сложности, естественно, если предусмотреть отверстия для последующего удаления из них жидкого фотополимера.

Габариты изделий определяются особенностями конструкции оборудования (рис.7.3) и достигают 500 мм по трем координатам.

Точность размеров определяется особенностями метода (размером светового пятна, шагом между сечениями) и достигает 0,2 мм и выше.

Достоинствами метода являются:

Гибкость и быстрота перенастройки на изготовление различных изделий

(срок от конструкторской идеи до выпуска изделий может составлять от нескольких часов до нескольких дней);

Минимизация затрат на подготовку производства;

Совместимость с существующими системами компьютерного проектирования;

Совместимость с некоторыми технологическими методами изготовления пластмассовых и металлических изделий (литье под давлением, литье по выплавляемым (выжигаемым) моделям);

Изделия, полученные этим методом могут быть использованы:

В качестве моделей, позволяющих проверить некоторые конструкторские идеи, эргономические факторы, эстетическое впечатление;

В качестве модельной оснастки при литье;

В качестве оснастки при изготовлении электродов при электроэрозионной и электрохимической обработке;

При изготовлении объектов по данным компьютерных томографов, позволяющих врачам моделировать проведение медицинских воздействий и изготавливать точные протезы, например сосудов;

При изготовлении моделей по данным координатно-измерительных машин и других видов объемного зондирования, например, в криминалистике, археологии.

Прочность материала модели не позволяет использовать ее как конструкционную деталь машины или изделие, применяемое в быту.

Но она может быть эффективно использована при изготовлении прессформы (рис.7.4) для литья под давлением изделий из термопластов. Такие прессформы можно изготавливать из силиконовых пластиков и композиций, отверждаемых при температуре около 400°С.

Модель можно использовать и при создании керамической формы в которую после прокаливания, может заливаться жидкий металл (рис.7.5).

Рис.7.6 Модели ювелирных украшений и модели игрушек, изготовленных лазерной стереолитографией
Рис.7.7 Модели корпусов приборов, изготовленных методом лазерной стереолитографии

При 3D художественном проектировании украшений, игрушек, предметов декоративного оформления, фурнитуры и т.д. полностью оценить эстетическое восприятие можно только по физической модели изделия, которая может быть получена лазерной стереолитографией (рис.7.6)

Процесс лазерной стереолитографии при создании элементов технических устройств (рис.7.7) позволяет на моделях проверить эргономические свойства будущего изделия, возможности сборки, размещения элементов и т.д. В условиях единичного и мелкосерийного производства полученные модели позволяют значительно сократить время на подготовку производства.

Само определение «лакокрасочные покрытия» - это сформировавшаяся пленка лакокрасочного материала нанесенного на какую-либо поверхность.

Лакокрасочные покрытия на различных поверхностях образуются в процессе пленкообразования лакокрасочных материалов нанесенных на эти поверхности. Сам химический процесс пленкообразования включает в себя сначала высыхание, а затем окончательное отверждение нанесенного покрывного материала.

Главное назначение (основная цель) лакокрасочных покрытий - защита поверхности материала от разрушений (металлических изделий - от коррозии, древесины - от гниения и разрушения) и для придания поверхностям декоративного вида, цвета и фактуры.

По своим эксплуатационным свойствам существуют лакокрасочные покрытия (ЛКП): атмосферостойкие, водостойкие, маслобензостойкие, химстойкие, термическистойкие, электроизоляционные, консервационные и ЛКП специального назначения.

Лакокрасочные покрытия спецназначения, это:

    Противообрастающие лакокрасочные покрытия, которые образуют судовые лакокрасочные материалы. Данные ЛКП препятствуют обрастанию подводных частей (ниже ватерлинии) судов и гидротехнических сооружений водными микроорганизмами, водорослями, ракушками и т. п.;

    Светоотражающие лакокрасочные покрытия (светящиеся ЛКП) - способные к люминесценции в видимой области спектра при воздействии света, облучения, радиоактивного излучения и т. п.;

    Термоиндикаторные лакокрасочные покрытия. Данные ЛКП изменяют цвет или яркость свечения при воздействии определенной температуры;

    Огнезащитные лакокрасочные покрытия - препятствующие распространению пламени или воздействию высокой температуры на защищаемую поверхность;

    Противошумные (звукоизолирующие) лакокрасочные покрытия. Название этих ЛКП говорит само за себя. По внеш. виду (степень глянца, волнистость поверхности, наличие дефектов) лакокрасочные покрытия принято подразделять на 7 классов. Для получения лакокрасочных покрытий применяют разнообразные лакокрасочные материалы (ЛКМ), различающиеся по составу и хим. природе пленкообразователя.

По своему внешнему виду (по степени глянца или матовости, волнистости поверхности, придания определенных визуальных эффектов, наличия каких-либо дефектов и т. д.) лакокрасочные покрытия подразделяются на различные классы.

Для получения лакокрасочных покрытий применяют различные лакокрасочные материалы (ЛКМ), различающиеся по составу и химическим свойствам пленкообразователей, это ЛКМ:

    На основе термопластичных пленкообразователей (битумные лаки, эфироцеллюлозные лаки);

    На основе термореактивных пленкообразователей (полиэфирные лаки, полиуретановые лаки);

    На основе растительных масел (олифы, масляные лаки, масляные краски);

    На основе модифицированных масел (алкидные лаки на основе алкидных смол).

Лакокрасочные покрытия широко применяются во всех отраслях народного хозяйства, а также в быту.

Мировое производство ЛКМ составляет свыше ста миллионов тонн год. Более 50 % всех лакокрасочных матриалов используется в машиностроении (из них 20 % в автомобилестроении), 25 % - в строительстве и ремонте.

В строительной отрасли народного хозяйства для получения лакокрасочных покрытий (отделочные ЛКМ) применяются упрощенные технологии производства и нанесения лакокрасочных покрытий в основном на основе таких пленкообразователей, как казеин, водные дисперсии поливинилацетата, акрилатов или других аналогичных компонентов, а также на основе жидкого стекла.

Подавляющее большинство лакокрасочных покрытий получают нанесением лакокрасочных материалов в несколько слоев. Это гарантирует лакокрасочным покрытиям наивысшие показатели защиты покрываемой поверхности.

Толщина однослойных лакокрасочных покрытий колеблется в пределах от 3-х до 30 мкм (для тиксотропных ЛКМ - до 200 мкм), многослойных - до 300 мкм.

Для получения многослойных защитных покрытий наносят несколько слоев разнородных ЛКМ (так называемые комплексные лакокрасочные покрытия), при этом каждый слой такого покрытия выполняет определенную функцию: нижний слой - защитный грунт (получают нанесением грунтовки) обеспечивает адгезию комплексного покрытия к подложке, замедление электрохимической коррозии и т. п.

Защитное лакокрасочное покрытие с максимальными защитными характеристиками должно состоять из следующих слоев: фосфатный слой; шпатлевка; грунтовка (1-2 слоя); и 1-3 слоя эмали. В особых случаях, поверхность дополнительно покрывается лаком, который придает декоративные и частично защитные свойства. При получении прозрачных лакокрасочных покрытий лак наносится непосредственно на защищаемую поверхность изделий.

Технологический процесс получения комплексных лакокрасочных покрытий включает до нескольких десятков операций, связанных с подготовкой поверхности, нанесением лакокрасочного материала, их сушкой (отверждением) и промежуточной обработкой.

Выбор технологического процесса зависит от типа ЛКМ и условий эксплуатации лакокрасочных покрытий, природы подложки (например сталь, алюминий, другие металлы и сплавы, древесина, строительные материалы), формы и габаритов окрашиваемого объекта.

Качество подготовки окрашиваемой поверхности в значительной степени определяет адгезионную прочность лакокрасочного покрытия к подложке и его долговечность.

Подготовка металлической поверхности заключается в очистке ручным или механизированным инструментом, пескоструйной либо дробеструйной обработкой, а также химическими способами (реагенты, абразивы и т. п.).

Последние включают:

    Обезжиривание поверхности, например обработка водными растворами NaOH, а также Na 2 CO 3 , Na 3 PO 4 или их смесей, содержащими ПАВ и другие добавки, органическими растворителями (бензин, уайт-спирит, три- или тетрахлорэтилен и т. п.) либо эмульсиями, состоящими из органического растворителя и воды;

    Травление - удаление окалины, ржавчины и других продуктов коррозии с поверхности (обычно после ее обезжиривания) действием, например в течение 20-30 мин 20 %-ной H 2 SO 4 (при 70-80°С) или 18-20 %-ной НСl (при 30-40°С), содержащими 1-3 % ингибитора кислотной коррозии;

    Нанесение конверсионных слоев (изменение природы поверхности; используется при получении долговечных комплексных лакокрасочных покрытий): фосфатирование и оксидирование (чаще всего электрохимическим способом на аноде);

    Получение металлических подслоев - цинкование или кадмирование (обычно электрохимическим способом на катоде). Обработку поверхности химическими методами обычно осуществляют окунанием или обливанием изделия рабочим раствором в условиях механизированной и автоматизированной конвейерной окраски. Химические методы обеспечивают высокое качество подготовки поверхности, но сопряжены с последующей промывкой водой и горячей сушкой поверхностей, а следовательно, с необходимостью очистки сточных вод.

Способы нанесения жидких лакокрасочных покрытий

1. Ручной способ (кистью, шпателем или валиком) - для окраски крупногабаритных изделий (строительных сооружении, некоторых промышленных конструкций), бытового ремонта и исправления дефектов в быту. В таких случаях используется лакокрасочная продукция естественной сушки.

2. Валковый способ - механизированное нанесение ЛКМ с помощью системы валиков обычно на плоские изделия (листовой и рулонный прокат, полимерные пленки, щитовые элементы мебели, бумага, картон, металлическая фольга).

3. Окунание в ванну, заполненную лакокрасочным материалом. Традиционные (органоразбавляемые) ЛКМ удерживаются на поверхности после извлечения изделия из ванны вследствие смачивания. В случае водоразбавляемых ЛКМ обычно применяют окунание с электро-, хемо- и термоосаждением. В соответствии со знаком заряда поверхности окрашиваемого изделия различают ано- и катофоретическое электроосаждение - частицы ЛКМ движутся в результате электрофореза к изделию, которое служит соответственно анодом или катодом. При катодном электроосаждении (не сопровождающемся окислением металла, как при осаждении на аноде) получают лакокрасочные покрытия , обладающие повышенной коррозионной стойкостью. Применение метода электроосаждения позволяет хорошо защитить от коррозии острые углы и кромки изделия, сварные швы, внутренние полости, но нанести можно только один слой ЛКМ, т. к. первый слой, являющийся диэлектриком, препятствует электроосаждению второго. Однако этот метод можно сочетать с предварительным нанесением пористого осадка из суспензии пленкообразователя; через такой слой возможно электроосаждение. При хемоосаждении применяется лакокрасочный материал дисперсионного типа, содержащий окислители - при их взаимодействии с металлической подложкой на ней создается высокая концентрация поливалентных ионов (Ме0:Ме+n), вызывающих коагуляцию приповерхностных слоев лакокрасочного материала. При термоосаждении осадок образуется на нагретой поверхности - в этом случае в воднодисперсионный лакокрасочный материал вводят специальную добавку (ПАВ), теряющего растворимость при нагревании.

4. Струйный облив (налив) - окрашиваемые изделия проходят через "завесу" ЛКМ. Струйный облив применяют для окраски узлов и деталей различных машин и оборудования, налив - для окраски плоских изделий (например листового металла, щитовых элементов мебели, фанеры).

Методы облива и окунания применяют для нанесения ЛКМ на изделия обтекаемой формы с гладкой поверхностью, окрашиваемые в один цвет со всех сторон. Для получения лакокрасочных покрытий равномерной толщины без подтеков и наплывов окрашенные изделия выдерживают в парах растворителя, поступающих из сушильной камеры.

5. Распыление:

а) пневматическое - с помощью ручных или автоматических пистолетообразных краскораспылителей ЛКМ с температурой от 20°С до 40-85°С подается под высоким давлением (200-600 кПа) очищенного воздуха. Данный метод высокопроизводителен, обеспечивает хорошее качество лакокрасочных покрытий на поверхностях различной формы;

б) гидравлическое (безвоздушное), осуществляемое под давлением, создаваемым насосом (при 4-10 МПа в случае подогрева ЛКМ, при 10-25 МПа без подогрева);

в) аэрозольное - из баллончиков, заполненных ЛКМ и пропеллентом. Данный метод применяют при подкраске автомашин, мебели и прочих изделий. Существенный недостаток методов распыления - большие потери ЛКМ (в виде устойчивого аэрозоля, уносимого в вентиляцию, из-за оседания на стенах окрасочной камеры и в гидрофильтрах), достигающие 40 % при пневмораспылении. С целью сокращения потерь (до 1-5 %) используют распыление в электростатическом поле высокого напряжения (50-140 кВ): частицы ЛКМ в результате коронного разряда (от специального электрода) или контактного заряжения (от распылителя) приобретают заряд (обычно отрицательный) и осаждаются на окрашиваемом изделии, служащем электродом противоположного знака. Этим методом наносят многослойные лакокрасочные покрытия на металлы и даже неметаллы, напр. на древесину с влажностью не менее 8%, пластмассы с токопроводящим покрытием.

Методы нанесения порошковых ЛКМ

    Насыпание (насеивание);

    Напыление (с подогревом подложки и газопламенным или плазменным нагревом порошка, либо в электростатическом поле);

    Нанесение в псевдоожиженном слое, например вихревом, вибрационном.

Многие методы нанесения ЛКМ применяют при окраске изделий на конвейерных поточных линиях, что позволяет формировать лакокрасочные покрытия при повышенных температурах, это обеспечивает их высокие технические и потребительские свойства.

Получают также градиентные лакокрасочные покрытия путем одноразового нанесения (обычно распылением) ЛКМ, содержащих смеси дисперсий, порошков или растворов термодинамически несовместимых пленкообразователей. Последние самопроизвольно расслаиваются при испарении общего растворителя или при нагревании выше температур текучести пленкообразователей.

Вследствие избирательного смачивания подложки один пленко-образователь обогащает поверхностные слои лакокрасочных покрытий, второй - нижние (адгезионные). В результате возникает структура многослоевого (комплексного) лакокрасочного покрытия.

Сушку (отверждение) нанесенных ЛКМ осуществляют при 15-25°С (холодная, естественная сушка) и при повышенных температурах (горячая, «печная» сушка).

Естественная сушка возможна при использовании ЛКМ на основе быстровысыхающих термопластичных пленкообразователей (например перхлорвиниловых смол, нитратов целлюлозы) или пленкообразователей, имеющих ненасыщенные связи в молекулах, для которых отвердителями служат кислород воздуха или влага, например алкидные смолы и полиуретаны, а также при применении двухупаковочных ЛКМ (отвердитель в них добавляется перед нанесением). К последним относятся ЛКМ на основе, напр., эпоксидных смол, отверждаемых ди- и полиаминами.

Сушку ЛКМ в промышленности осуществляют обычно при температуре 80-160°С, порошковых и некоторых специальных ЛКМ - при 160-320°С. В этих условиях ускоряется улетучивание растворителя (обычно высококипящего) и происходит термоотверждение реакционноспособных пленкообразователей, например алкидных, меламино-алкидных, феноло-формальдегидных смол.

Наиболее распространенные методы термоотверждения покрытий: конвективный (изделие обогревается циркулирующим горячим воздухом), терморадиационный (источник обогрева - инфракрасное излучение) и индуктивный (изделие помещается в переменное электромагнитное поле).

Для получения лакокрасочных покрытий на основе ненасыщенных олигомеров используют также отверждение под действием ультрафиолетового излучения, ускоренных электронов (электронного пучка).

В процессе сушки протекают различные физические и химические процессы, приводящие к формированию лакокрасочных покрытий, например смачивание подложки, удаление органического растворителя и воды, полимеризация и (или) поликонденсация в случае реакционноспособных пленкообразователей с образованием сетчатых полимеров.

Формирование лакокрасочных покрытий из порошковых ЛКМ включает оплавление частиц пленкообразователя, слипание возникших капелек и смачивание ими подложки и иногда термоотверждение.

Промежуточная обработка лакокрасочных покрытий:

1) шлифование абразивными шкурками нижних слоев лакокрасочных покрытий для удаления посторонних включений, придания матовости и улучшения адгезии между слоями;

2) полирование верхнего слоя с использованием специальных паст для придания лакокрасочным покрытиям зеркального блеска. Пример технологические схемы окраски кузовов легковых автомобилей (перечислены последовательности операции): обезжиривание и фосфатирование поверхности, сушка и охлаждение, грунтование электрофорезной грунтовкой, отверждение грунтовки (30 минут при 180°С), охлаждение, нанесение шумоизолирующего, герметизирующего и ингибирующего составов, нанесение эпоксидной грунтовки двумя слоями, отверждение (20 минут при 150°С), охлаждение, шлифование грунтовки, протирка кузова и обдув воздухом, нанесение двух слоев алкидно-меламиновой эмали, сушка (30 минут при 130-140°С).

Свойства лакокрасочных покрытий определяются составом ЛКМ (типом пленкообразователя, пигментом и прочими составляющими), а также структурой покрытий.

Наиболее ценные характеристики лакокрасочных покрытий - адгезионная прочность к подложке (адгезия), твердость, прочность при изгибе и ударе. Кроме того, лакокрасочные покрытия оцениваются на влагонепроницаемость, атмосферостойкость, химстойкость и другие защитные свойства, комплекс декоративных свойств, например прозрачность или укрывистость (непрозрачность), интенсивность и чистота цвета, степень блеска.

Укрывистость достигается введением в ЛКМ наполнителей и пигментов. Последние могут выполнять также и иные функции: окрашивать, повышать защитные свойства (например противокоррозионные) и придавать специальные свойства лакокрасочным покрытиям (например электропроводимость, теплоизолирующую способность). Объемное содержание пигментов в эмалях составляет <30 %, в грунтовках - около 35 %, а в шпатлевках - до 80 %.

Предельный «уровень» пигментирования зависит также от типа ЛКМ: в порошковых красках он составляет 15-20 %, а в воднодисперсионных - до 30 %.

Большинство ЛКМ содержат органические растворители, поэтому производство лакокрасочных покрытий является взрыво- и пожароопасным. Кроме того, применяемые растворители, как правило, токсичны (ПДК 5-740 мг/м з).

После нанесения ЛКМ требуется обезвреживание растворителей термическим или каталитическим окислением (дожиганием) отходов; при больших расходах ЛКМ и использовании дорогостоящих растворителей целесообразна их утилизация. В этом отношении преимущество имеют лакокрасочные материалы не содержащие органических растворителей (водоэмульсионные краски, порошковые краски), и ЛКМ с повышенным (более 70 %) содержанием твердых веществ.

В то же время наилучшими защитными свойствами (на единицу толщины), как правило, обладают лакокрасочные покрытия из ЛКМ используемых в виде растворов.

Для контроля качества и долговечности лакокрасочных покрытий проводят их внешний осмотр и определяют с помощью приборов (на образцах) свойства - физико-механические (адгезия, эластичность, твердость и др.), декоративные и защитные (антикоррозионные свойства, атмосферостойкость, водопоглощение).

Качество лакокрасочных покрытий оценивают по отдельным наиболее важным характеристикам (например атмосферостойкие лакокрасочные покрытия - по потере блеска и мелению) или по квалиметрической системе.

Долговечность лакокрасочных покрытий зависит также от интенсивности внешних разрушающих факторов (для атмосферостойких лакокрасочных покрытий - солнечное излучение, влажность, средняя температура и ее перепады и др.).

Механизм разрушения покрытий существенно зависит также от природы пленкообразователя, каталитической активности пигментов и пр. Так, перхлорвиниловые лакокрасочные покрытия разрушаются в основном вследствие термо- и фотохимического разложения с выделением НСl, густосетчатые эпоксидные и полиэфирные - из-за возрастания внутренних напряжений, вызывающих ухудшение адгезионной прочности и снижение эластичности (вплоть до появления трещин на поверхности).

Долговечность современных атмосферостойких лакокрасочных покрытий (в умеренном климате) составляет 7-10 лет, водостойких - 3-5 лет, термостойкие выдерживают температуру до 300°С (кратковременно - 600°С и даже более).

Последнее десятилетие на российском строительном рынке отмечено активным появлением большого количества новых строительных материалов и технологий. Их появление изменило как сам подход к выполнению работ, так и общие тенденции в отделке интерьеров и фасадов. Так, например, вновь стала актуальной окраска стен и потолков, но уже на более высоком технологическом уровне. Это обеспечивается, прежде всего, качественным улучшением декоративных и эксплутационных свойств лакокрасочных покрытий и расширением видов оснований под окраску.

Отечественным строителям на ходу приходится осваивать новые, передовые технологии, учась часто на своих собственных ошибках. К сожалению, практически отсутствуют специализированные центры обучения, грамотное сопровождение продаж и техническая поддержка. В результате при выполнении работ нарушаются элементарные технологические правила, а строители рассчитывают, что высококачественный финишный материал покроет все огрехи подготовительных этапов работ. Однако статистика рекламаций лакокрасочных покрытий показывает, что:

  • около 70 % всех причин дефектов является неправильная подготовка основания,
  • около 15 % - неправильный выбор системы окраски,
  • около 10 % - несоблюдение технологии нанесения
  • и только 5 % - некачественная краска.
  • Подготовка основания

    Приступая к работе, маляр должен оценить качество основания. Для этого используется прежде всего визуальный контроль. При этом определяется вид и состояние материала основания, видимые повреждения, выявляются технологические ошибки его выполнения. Вид и состав основания позволяет оценить его воздействие на покрытие и правильно выбрать систему окраски. Основание может быть выполнено из органических или неорганических материалов, иметь пористую или плотную структуру. Кроме этого, необходимо оценить насколько оно чистое и сухое, на бетонных основаниях должна отсутствовать опалубочная смазка. Простукиванием штукатурки определяются возможные пустоты или отслоения. Если в качестве основания используется старое лакокрасочное покрытие, то прочность его можно определить тестированием с помощью малярной ленты: необходимо наклеить ее на поверхность, а затем резко оторвать. Если покрытие не нарушается, то его прочность достаточна.

    Очень важна для правильного выполнения работ проверка впитывающей способности основания. Для этого используется увлажнение поверхности. В зависимости от скорости впитывания влаги различают: сильно впитывающее, нормально впитывающее и слабо впитывающее основания. Если вода быстро уходит в основание, то при нанесении разбавляемых водой составов нарушается процесс образования пленки и покрытие не наберет достаточной прочности. Поэтому в данном случае необходимо применение специальных грунтовок.

    Серьезная проблема - это неодинаковая впитывающая способность различных участков основания. Это может произойти при использовании в основании различных материалов. Если не устранить это различие, то на готовом лакокрасочном покрытии будут заметны границы перехода. А если в результате осмотра выявлено меление или осыпание основания, то наличие такого дефекта может привести к тому, что финишное покрытие отслоится вместе с верхним слоем основания. При выявлении таких свойств основания необходимо применять для них специальные грунтовки. Они должны быть непигментированными и тонко-дисперсионными, достаточно жидкими и хорошо проникать в капилляры, не очень быстро высыхать, обеспечивать адгезию для последующих покрытий, не образовывать толстую пленку. При нанесении такие грунтовки не должны образовывать глянцевую пленку. Поверхности с нормальной и равномерной впитывающей способностью обрабатывать специальными грунтовками необязательно; достаточно нанести краску с небольшим добавлением воды (процент разбавления обычно указан в описании). Затем можно наносить заключительный слой без разбавления. Основания, слабо впитывающие влагу, обрабатываются пигментированными грунтовками, которые имеют особо высокую адгезию или образуют химические соединения с основанием. Они наносятся достаточно толстым слоем и служат связующим мостиком между основанием и следующим покрытием.

    Под декоративные и гипсовые штукатурки используют грунтовки с добавлением мелкого кварцевого песка. Тогда отпадает необходимость в устаревших методах улучшения сцепления декоративного слоя с основанием - нанесение насечек или крепление специальной сетки.

    Выбор системы

    Правильный выбор системы окраски обеспечит оптимальные сроки службы и одновременно позволит избежать лишних затрат. Наиболее часто выбор стоит между акриловыми, силикатными и силиконовыми системами. При выборе той или иной системы необходимо принимать во внимание эксплутационные требования к покрытию, их физические свойства, а также особенности цветового оформления.

    Акриловые дисперсионные краски содержат в качестве связующего полимеры или сополимеры акрила. Системы на их основе подходят практически для всех оснований, используемых в строительстве. Покрытия акриловыми красками обладают хорошей паропроницае-мостью, т.е. позволяют основанию "дышать". При нормальных условиях эксплуатации они обеспечивают оптимальное сочетание цена/качество. Кроме этого, такие покрытия предлагают наибольшие возможности по цветовому оформлению поверхностей.

    В материалах на силикатной основе в качестве пленкообразующего служит жидкое калийное стекло, которое получается при совместном плавлении поташа и кварца с последующим растворением в воде образовавшегося продукта. Это связующее относится к минеральным. Образование пленки в отличие от акриловых красок происходит в результате двухступенчатой химической реакции. Силикатные краски применяются главным образом для окраски минеральных оснований, например, бетонных, силикатного кирпича и т.п., а также поверхностей раньше окрашенных минеральными красками. Они обладают наивысшей проницаемостью для водяных паров и углекислого газа, поэтому это оптимальное решение при окраски зданий старинной постройки и памятников архитектуры.

    Важным свойством силикатных покрытий является то, что они не поддерживают развитие микроорганизмов и потому не требуют специальных биоцидных добавок. Однако высокая щелочность краски вызывает необходимость при нанесении защищать стекло, алюминий, натуральный камень от попадания брызг, которые могут оставить несмываемые пятна. Для колеровки необходимо использовать только щелочестойкие и стойкие к жидкому калийному стеклу пигменты, поэтому цветовая гамма силикатных материалов сильно ограничена.

    Силиконовые краски относятся к самым современным краскам. Они сочетают в себе практически все лучшие свойства акриловых и силикатных красок. Прежде всего, это высокая проницаемость для водяных паров и углекислого газа (у силиконовых красок эти показатели близки к силикатным), но при высокой водоотталкивающей способности поверхности. Они подходят практически для всех типов минеральных поверхностей, хорошо совместимы как с минеральными, так и с синтетическими красками. Силиконовые покрытия, также как и силикатные, не поддерживают развитие микроорганизмов. Поэтому они не нуждаются в применении специальных фунгицидных и альгицидных добавок.

    Силиконовые краски обладают наилучшими в настоящее время декоративными и эксплуатационными свойствами покрытий. Единственным недостатком, ограничивающим их применение, является их высокая стоимость.

    Нанесение лакокрасочных покрытий

    Как известно, основные функции лакокрасочных покрытий - декоративная и защитная. Хорошая укрывистость и белизна обеспечивают скорее декоративные функции. Но для того чтобы покрытие выполняло предъявляемые к нему требования по влагостойкости, стойкости к истиранию, стойкости к климатическим воздействиям, необходимо достижение определенной толщины высохшей пленки. Для фасадных покрытий это обычно 100 - 120 мкм, т, е. приблизительно 200 мл краски на 1 м2. Нанесение более тонких слоев приводит к дефектам лакокрасочного покрытия и в дальнейшем - к повреждению ограждающих конструкций.

    Если применять жидкие краски для получения толстой пленки на вертикальных поверхностях, потребуется нанесение как минимум 4 -5 слоев. Если же использовать высококачественные, тиксотропные краски, то такое покрытие можно получить за один проход. (Тиксотропные краски имеют густую консистенцию в спокойном состоянии, при механические воздействии они разжижаются, а после снятия такого воздействия снова приобретают желеобразную консистенцию). Кроме того, тиксотропные краски позволяют использовать при окраске наиболее прогрессивный и производительный способ безвоздушного распыления - Airless.

    Колеровка краски

    Колеровка краски является одним из важных и очень актуальных вопросов. Для колеровки можно применять как ручную, так и компьютерную колеровку. Компьютерная колеровка наиболее удобна для строителей, требует минимум трудозатрат, особенно при выполнении больших объемов работ. Для качественной колеровки материал должен иметь очень точную дозировку как по объему, так и по отдельным компонентам. Хорошо разработанные базы позволяют точно попадать в цвет, независимо от количества колеруемой краски, и гарантируют выполнение декларируемых свойств покрытия.

    При небольших объемах до сих пор актуальна ручная колеровка. Здесь можно выбрать колеровку полнотонными красками или универсальные пигментные пасты, не содержащие связующего. Универсальные пасты позволяют колеровать как водоразбавляемые краски, так и содержащие растворитель эмали. Однако при неграмотном использовании пигментных паст можно легко нарушить баланс между количеством связующего и заполнителя и, например, вместо стойкого к истиранию покрытия получить поверхность, которая пачкается при сухом протирании, или легко выгорающее покрытие. Применение полнотонных красок, содержащих в своем составе связующее, возможно только для материалов с таким же связующим. Но надежность и качество этого способа выше, поэтому для ручной колеровки они предпочтительней.

    Эксплуатация

    При эксплуатации необходимо учитывать, что вечных лакокрасочных покрытий не существует. Защищая основание от вредных воздействий, оно изнашивается. Однако правильно выполненное покрытие обеспечит качественное покрытие с продолжительным сроком службы. Срок службы покрытий зависит от многих причин: это и технология нанесения, и воздействия на покрытие во время эксплуатации. Например, фасадные покрытия на II акриле служат 8-10 лет, а при щадящих условиях - гораздо дольше (например, фасад находится в тени или его закрывает козырек). Но если при выполнении работ были соблюдены все технологические аспекты, то обновление покрытия может быть выполнено без больших финансовых затрат. В результате окрашенные конструкции будет служить долго и не создавать для своих владельцев дополнительных проблем.

    Поэтому, начиная новое строительство, разумнее сразу качественно выполнить все этапы работ, не впадая в излишнюю экономию. Это позволит избежать существенных затрат впоследствии на ремонтные и восстановительные работы.

    ЛАКОКРАСОЧНЫЕ ПОКРЫТИЯ образуются в результате пленкообразования (высыхания, отверждения) лакокрасочных материалов, нанесенных на пов-сть (подложку). Осн. назначение: защита материалов от разрушения (напр., металлов - от коррозии, дерева - от гниения) и декоративная отделка пов-сти. По эксплуатац. св-вам различают Л. п. атмосфере-, водо-, масло- и бензостойкие, химически стойкие, термостойкие, электроизоляционные, консервационные, а также спец. назначения. К последним относятся, напр., противообрастающие (препятствуют обрастанию подводных частей судов и гидротехн. сооружений морскими микроорганизмами), светоотражающие, светящиеся (способны к люминесценции в видимой области спектра при облучении светом или радиоактивным излучением), термоиндикаторные (изменяют цвет или яркость свечения при определенной т-ре), огнезащитные, противошумные (звукоизолирующие). По внеш. виду (степень глянца, волнистость пов-сти, наличие дефектов) Л. п. принято подразделять на 7 классов. Для получения Л. п. применяют разнообразные (ЛКМ), различающиеся по составу и хим. природе пленкообразователя . О ЛКМ на основе термопластичных пленкообразователей см., напр., Битумные , Эфироцеллюлозные лаки, о ЛКМ на основе термореактивных пленкообразователей - Полиэфирные лаки, Полиуретановые лаки и др.; к ЛКМ на основе масел относятся олифы, масляные краски, к модифицированным маслами - алкидные лаки (см. Алкидные смолы ). Используют Л. п. во всех отраслях народного хозяйства и в быту. Мировое произ-во ЛКМ составляет ок. 20 млн. т/год (1985). Более 50% всех ЛКМ расходуется в машиностроении (из них 20% - в автомобилестроении), 25% - в строит. индустрии. В стр-ве для получения Л. п. (отделочные) применяют упрощенные технологии изготовления и нанесения ЛКМ гл. обр. на основе таких пленкообразователей, как , водные дисперсии поливинилацетата, акрилатов или др., жидкое стекло. Большинство Л. п. получают нанесением ЛКМ в неск. слоев (см. рис.). Толщина однослойных Л. п. колеблется в пределах 3-30 мкм (для тиксотропных ЛКМ - до 200 мкм), многослойных - до 300 мкм. Для получения многослойных, напр. защитных, покрытий наносят неск. слоев разнородных ЛКМ (т. наз. комплексные Л. п.), при этом каждый слой выполняет определенную ф-цию: ниж. слой - грунт (получают нанесением грунтовки ) обеспечивает адгезию комплексного покрытия к подложке, замедление электрохим. коррозии

    Защитное лакокрасочное покрытие (в разрезе): 1 -фосфатный слой; 2 - грунт; 3 - шпатлевка; 4 и 5 - слои .

    металла; промежуточный - шпатлевка (чаще применяют "второй грунт", или т. наз. грунт-шпатлевку) - выравнивание пов-сти (заполнение пор, мелких трещин и др. дефектов); верхние, покровные, слои (эмали; иногда для повышения блеска последний слой - лак) придают декоративные и частично защитные св-ва. При получении прозрачных покрытий лак наносят непосредственно на защищаемую пов-сть. Технол. процесс получения комплексных Л. п. включает до неск. десятков операций, связанных с подготовкой пов-сти, нанесением ЛКМ, их сушкой (отверждением) и промежут. обработкой. Выбор технол. процесса зависит от типа ЛКМ и условий эксплуатации Л. п., природы подложки (напр., сталь, Аl, др. и сплавы, строит, материалы), формы и габаритов окрашиваемого объекта. Качество подготовки окрашиваемой пов-сти в значит. степени определяет адгезионную Л. п. к подложке и его долговечность. Подготовка металлич. пов-стей заключается в их очистке ручным или механизир. инструментом, пескоструйной либо дробеструйной обработкой или др., а также хим. способами. Последние включают: 1) обезжиривание пов-сти, напр. обработка водными р-рами NaOH, а также Na 2 CO 3 , Na 3 PO 4 или их смесей, содержащими ПАВ и др. , орг. р-рителями (напр., бензином, уайтспиритом, три- или тетрахлорэтиленом) либо эмульсиями, состоящими из орг. р-рителя и воды; 2) - удаление окалины, ржавчины и др. продуктов коррозии с пов-сти (обычно после ее обезжиривания) действием, напр., в течение 20-30 мин 20%-ной H 2 SO 4 (70-80 °С) или 18-20%-ной НСl (30-40 °С), содержащими 1-3% ингибитора кислотной коррозии; 3) нанесение конверсионных слоев (изменение природы пов-сти; используется при получении долговечных комплексных Л. п.): а) фосфатирование, к-рое заключается в образовании на пов-сти стали пленки нерастворимых в воде трехзамещенных ортофосфатов, напр. Zn 3 (PO 4) 2 . Fe 3 (PO 4) 2 , в результате обработки металла водорастворимыми однозамещенными ортофосфатами Mn-Fe, Zn или Fe, напр. Mn(H 2 PO 4) 2 -Fe(H 2 PO 4) 2 , либо тонкого слоя Fe 3 (PO 4) 2 при обработке стали р-ром NaH 2 PO 4 ; б) (чаще всего электрохим. способом на аноде); 4) получение металлич. подслоев - цинкование или кадмирование (обычно электрохим. способом на катоде). Обработку пов-сти хим. методами обычно осуществляют окунанием или обливанием изделия рабочим р-ром в условиях механизир. и автоматизир. конвейерной окраски. Хим. методы обеспечивают высокое качество подготовки пов-сти, но сопряжены с послед. промывкой водой и горячей сушкой пов-стей, а следовательно, с необходимостью очистки сточных вод.
    Методы нанесения жидких ЛКМ.
    1. Ручной (кистью, шпателем, валиком) - для окраски крупногабаритных изделий (строит, сооружении, нек-рых пром. конструкций), исправления дефектов, в быту; используются ЛКМ естеств. сушки (см. ниже).
    2. Валковый - механизир. нанесение ЛКМ с помощью системы валиков обычно на плоские изделия (листовой и рулонный прокат, полимерные пленки, щитовые элементы мебели, картон, металлич. фольга).
    3. Окунание в ванну, заполненную ЛКМ. Традиционные (органоразбавляемые) ЛКМ удерживаются на пов-сти после извлечения изделия из ванны вследствие смачивания. В случае водоразбавляемых ЛКМ обычно применяют окунание с электро-, хемо- и термоосаждением. В соответствии со знаком заряда пов-сти окрашиваемого изделия различают ано- и катофоретич. - частицы ЛКМ движутся в результате электрофореза к изделию, к-рое служит соотв. анодом или катодом. При катодном электроосаждении (не сопровождающемся окислением металла, как при осаждении на аноде) получают Л. п., обладающие повыш. коррозионной стойкостью. Применение метода элект-роосаждения позволяет хорошо защитить от коррозии острые углы и кромки изделия, сварные швы, внутр. полости, но нанести можно только один слой ЛКМ, т. к. первый слой, являющийся диэлектриком, препятствует электроосаждению второго. Однако этот метод можно сочетать с предварит. нанесением пористого осадка из др. пленкообразователя; через такой слой возможно электроосаж. При хемоосаждении. используют ЛКМ дисперсионного типа, содержащие ; при их взаимод. с металлич. подложкой на ней создается высокая поливалентных ионов (Ме 0:Ме +n), вызывающих коагуляцию приповерхностных слоев ЛКМ. При термоосаждении осадок образуется на нагретой пов-сти; в этом случае в воднодисперсионный ЛКМ вводят спец. добавку ПАВ, теряющего р-римость при нагревании.
    4. Струйный облив (налив) - окрашиваемые изделия проходят через "завесу" ЛКМ. Струйный облив применяют для окраски узлов и деталей разл. машин и оборудования, налив - для окраски плоских изделий (напр., листового металла, щитовых элементов мебели, фанеры). Методы облива и окунания применяют для нанесения ЛКМ на изделия обтекаемой формы с гладкой пов-стью, окрашиваемые в один цвет со всех сторон. Для получения Л, п. равномерной толщины без подтеков и наплывов окрашенные изделия выдерживают в парах р-рителя, поступающих из сушильной камеры.
    5. Распыление:
    а) пневматическое - с помощью ручных или автоматич. пистолетообразных краскораспылителей, ЛКМ с т-рой от комнатной до 40-85 °С подается под давлением (200-600 кПа) очищенного воздуха; метод высокопроизводителен, обеспечивает хорошее качество Л. п. на пов-стях разл. формы;
    б) гидравлическое (безвоздушное), осуществляемое под давлением, создаваемым насосом (при 4-10 МПа в случае подогрева ЛКМ, при 10-25 МПа без подогрева);
    в) аэрозольное - из баллончиков, заполненных ЛКМ и пропеллентом; применяют при подкраске автомашин, мебели и др.
    Существ. недостаток методов распыления - большие потери ЛКМ (в виде устойчивого аэрозоля, уносимого в вентиляцию, из-за оседания на стенах окрасочной камеры и в гидрофильтрах), достигающие 40% при пневмораспылении. С целью сокращения потерь (до 1-5%) используют распыление в электростатич. поле высокого напряжения (50-140 кВ): частицы ЛКМ в результате коронного разряда (от спец. электрода) или контактного заряжения (от распылителя) приобретают заряд (обычно отрицательный) и осаждаются на окрашиваемом изделии, служащем электродом противоположного знака. Этим методом наносят многослойные Л. п. на металлы и даже неметаллы, напр. на древесину с влажностью не менее 8%, с токопроводящим покрытием. Методы нанесения порошковых ЛКМ: насыпание (насеивание); напыление (с подогревом подложки и газопламенным или плазменным нагревом порошка, либо в электростатич. поле); нанесение в псевдоожиженном слое, напр. вихревом, вибрационном. Мн. методы нанесения ЛКМ применяют при окраске изделий на конвейерных поточных линиях, что позволяет формировать Л. п. при повыш. т-рах, а это обеспечивает их высокие техн. св-ва. Получают также т. наз. градиентные Л. п. путем одноразового нанесения (обычно распылением) ЛКМ, содержащих смеси дисперсий, порошков или р-ров термодинамически несовместимых пленкообразователей. Последние самопроизвольно расслаиваются при испарении общего р-рителя или при нагр. выше т-р текучести пленкообразователей. Вследствие избират. смачивания подложки один пленко-образователь обогащает поверхностные слои Л. п., второй - нижние (адгезионные). В результате возникает структура многослоевого (комплексного) Л. п. Сушку () нанесенных ЛКМ осуществляют при 15-25 °С (холодная, естеств. ) и при повыш. т-рах (горячая, "печная" сушка). Естеств. сушка возможна при использовании ЛКМ на основе быстровысыхающих термопластичных пленкообразователей (напр., перхлорвиниловых смол, нитратов целлюлозы) или пленкообразователей, имеющих ненасыщ. связи в молекулах, для к-рых отвердителями служат О 2 воздуха или влага, напр. и полиуретаны соотв., а также при применении двухупаковочных ЛКМ (отвердитель в них добавляется перед нанесением). К последним относятся ЛКМ на основе, напр., эпоксидных смол, отверждаемых ди- и полиаминами. Сушку ЛКМ в пром-сти осуществляют обычно при 80-160 °С, порошковых и нек-рых специальных ЛКМ - при 160-320 °С. В этих условиях ускоряется улетучивание р-ритсля (обычно высококипящего) и происходит т. наз. термоотверждение реакционноспособных пленкообразователей, напр. алкидных, меламино-алкидных, феноло-формальд. смол. наиб. распространенные методы термоотвсрждения -конвективный (изделие обогревается циркулирующим горячим воздухом), терморадиационный (источник обогрева - ИК излучение) и индуктивный (изделие помещается в переменное электромагн. поле). Для получения Л. п. на основе ненасыщ. олигомеров используют также отверждение под действием УФ излучения, ускоренных электронов (электронного пучка). В процессе сушки протекают разл. физ.-хим. процессы, приводящие к формированию Л. п., напр. подложки, удаление орг. р-рителя и воды, и (или) в случае реакционноспособных пленкообразователей с образованием сетчатых полимеров (см. также Отверждение ). Формирование Л. п. из порошковых ЛКМ включает оплавление частиц пленкообразователя, слипание возникших капелек и смачивание ими подложки и иногда термоотверждение. Пленкообразование из воднодисперсионных ЛКМ завершается процессом аутогезии (слипания) полимерных частиц, протекающим выше т. наз. миним. т-ры пленкообразования, близкой к т-ре стеклования пленкообразователя. Формирование Л. п. из органодисперсионных ЛКМ происходит в результате коалесценции полимерных частиц, набухших в р-рителе или пластификаторе в условиях естеств. сушки, при кратковременном нагревании (напр., 3-10 с при 250-300 °С). Промежуточная обработка Л. п.: 1) шлифование абразивными шкурками ниж. слоев Л. п. для удаления посторонних включений, придания матовости и улучшения адгезии между слоями; 2) верх, слоя с использованием, напр., разл. паст для придания Л. п. зеркального блеска. Пример технол. схемы окраски кузовов легковых автомобилей (перечислены последоват. операции): обезжиривание и фосфатирование пов-сти, сушка и охлаждение, грунтование электрофорезной грунтовкой, отверждение (180 °С, 30 мин), охлаждение, нанесение шумоизолирующего, герметизирующего и ингибирующего составов, нанесение эпоксидной грунтовки двумя слоями, отверждение (150 °С, 20 мин), охлаждение, шлифование грунтовки, протирка кузова и обдув воздухом, нанесение двух слоев алкидно-меламиновой эмали, сушка (130-140 °С, 30 мин). Свойства покрытий определяются составом ЛКМ (типом пленкообразователя, пигментом и др.), а также структурой покрытий. наиб. важные физ.-мех. характеристики Л. п. - адгезионная прочность к подложке (см. Адгезия ), твердость, прочность при изгибе и ударе. Кроме того, Л. п. оцениваются на влагонепроницаемость, химстойкость и др. защитные св-ва, комплекс декоративных св-в, напр. прозрачность или укрывистость (непрозрачность), интенсивность и чистота цвета, степень блеска. Укрывистость достигается введением в ЛКМ наполнителей и пигментов. Последние могут выполнять также и др. ф-ции: окрашивать, повышать защитные св-ва (противокоррозионные) и придавать спец. св-ва покрытиям (напр., электропроводимость, теплоизолирующую способность). Объемное содержание пигментов в эмалях составляет <30%, в грунтовках - ок. 35%, а в шпатлевках - до 80%. Предельный "уровень" пигментирования зависит также от типа ЛКМ: в порошковых красках - 15-20%, а в воднодисперсионных - до 30%. Большинство ЛКМ содержат орг. р-рители, поэтому произ-во Л. п. является взрыво- и пожароопасным. Кроме того, применяемые р-рители токсичны (ПДК 5-740 мг/м 3). После нанесения ЛКМ требуется обезвреживание р-рителей, напр. термич. или каталитич. окислением (дожиганием) отходов; при больших расходах ЛКМ и использовании дорогостоящих р-рителей целесообразна их утилизация - поглощение из паровоздушной смеси (содержание р-рителей не менее 3-5 г/м 3) жидким или твердым (активированный уголь, цеолит) поглотителем с послед. регенерацией, В этом отношении преимущество имеют ЛКМ, не содержащие орг. р-рителей (см. Водоэмульсионные , Порошковые краски ), и ЛКМ с повышенным (/70%) содержанием твердых в-в. В то же время наилучшими защитными св-вами (на единицу толщины), как правило, обладают Л. п. из ЛКМ. используемых в виде р-ров. Бездефектность Л. п., улучшение смачивания подложки, устойчивость при хранении (предотвращение оседания пигментов) эмалей, водно- и органо-дисперсионных красок достигается введением в ЛКМ на стадии изготовления или перед нанесением функцион. добавок; напр., рецептура воднодисперсионных красок обычно включает 5-7 таких добавок (диспергаторы, смачиватели, коалесценты, антивспениватели и др.). Для контроля качества и долговечности Л. п. проводят их внеш. осмотр и определяют с помощью приборов (на образцах) св-ва - физико-мех. ( , эластичность, твердость и др.), декоративные и защитные (напр., антикоррозионные св-ва, атмосферостойкость, водопоглощение). Качество Л. п. оценивают по отдельным наиб. важным характеристикам (напр., атмосферостойкие Л. п. - по потере блеска и мелению) или по квалиметрич. системе: Л. п. в зависимости от назначения характеризуют определенным набором псв-в, значения к-рых x i (i}

    Понравилась статья? Поделитесь ей