Контакты

Рециркуляционный насос в системах отопления и гвс. Рециркуляционный насос для гвс

Горячее водоснабжение - обязательный элемент современных инженерных систем. Сотни, если не тысячи, производителей работают над тем, чтобы обеспечить человека горячей водой. Притом, обеспечить быстро и комфортно. И слово “комфорт” здесь не пустой звук. У качественного горячего водоснабжения много составляющих. Вот только некоторые из них:

  • регулирование температуры воды
  • экономичность расхода энергоносителей на подогрев
  • предотвращение ошпаривания
  • уничтожение бактерий “легионелла”
  • достаточный напор и расход

Один из главных факторов, которые определяют комфорт водопользования - немедленная подача горячей воды из крана . Если расстояние от водонагревателя до смесителя превышает определенное расстояние, то горячая вода при открывании крана побежит не сразу. Только после того, как из труб выбежит холодная. И это составляет определенный дискомфорт. Ну кому понравится ждать 10-20 секунд пока из смесителя пойдет горячая вода. Да и неэкономично это. Фактически, первые литры воды сливаются в канализацию.

Решение такой проблемы - установка рециркуляционного насоса . Параллельно основной трубе прокладывается дополнительная, так называемая линия рециркуляции. На ней устанавливается рециркуляционный насос, который “гоняет” воду по кругу и этим поддерживая вблизи водоразборных точек необходимую температуру горячей воды.

Когда устанавливается рециркуляционный насос

Циркуляцию горячего водоснабжения следует проектировать, если в трубопроводе от бойлера до точки водоразбора объем воды составляет более трех литров. Объем в три литра следует считать верхним пределом. Чем меньший объем воды от бойлера до смесителя, тем быстрее горячая вода поступит пользователю.
Приблизительный объем воды в одном метре трубопровода и длина трубопровода с тремя литрами воды:
Диаметр трубы

  • 16мм - 0,11л/1м - 3л/27,7м
  • 20мм - 0,16л/1м - 3л/18,25м
  • 25мм - 0,25л/1м - 3л/12м
  • 32мм - 0,45л/1м - 3л/6,67м
  • 40мм - 0,8л/1м - 3л/3,75м
  • 50мм - 1,32л/1м - 3л/2,27м
  • 63мм - 2,04л/1м - 3л/1,47м

Характеристики рециркуляционного насоса

Для частных домов, квартир, коттеджей используются высокоэффективные рециркуляционные насосы с мимнимальным энергопотреблением, бронзовым корпусом, присоединением 1/2". Изделия этой серии производят все производители циркуляционных насосов. Особо можно отметить насосы STAR-Z NOVA производства WILO, UP 15 GRUNDFOS. Потребляемая мощность таких насосов очень небольшая, находится в пределах 2-5 Вт. Для линии циркуляции в бытовых системах вполне достаточен напор 0,8-1м и расход 0,3-0,4 м.куб./час. К дополнительным функциям, позволяющим повысить экономичность насоса, относятся:

  • встроенный таймер
  • термостат
  • комплектация термоизоляцией

Рециркуляционный насос - отличное решение для немедленного получения горячей воды на водоразборной точке и повышения комфорта водоснабжения.

Ниже видео по рециркуляционному насосу WILO STAR Z NOVA

Изобретение относится к теплоэнергетике и может быть использовано в отопительных котельных. Сетевую воду, поступающую от потребителей по обратному трубопроводу теплосети, направляют потребителям, температуру сетевой воды перед водогрейными котлами поддерживают постоянной, для чего осуществляют рециркуляцию части воды из подающего трубопровода в обратный трубопровод теплосети, утечки сетевой воды в теплосети компенсируют подпиточной водой, которую по подпиточному трубопроводу направляют в обратный трубопровод теплосети. При этом подпиточную воду готовят в вакуумном деаэраторе, для чего в него подают исходную воду и греющий агент по трубопроводам исходной воды и греющего агента, а рециркуляцию воды осуществляют через трубопровод греющего агента, вакуумный деаэратор и подпиточный трубопровод, а поддержание постоянной температуры сетевой воды перед водогрейными котлами производят путем регулирования расхода воды в трубопроводе греющего агента вакуумного деаэратора. Совмещение процесса рециркуляции сетевой воды с обработкой подпиточной воды позволяет упростить схему котельной. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано в отопительных котельных. Известны способы работы отопительных котельных, по которым сетевую воду, поступающую от потребителей по обратному трубопроводу теплосети, нагревают в водогрейных котлах и по подающему трубопроводу теплосети направляют потребителям, температуру сетевой воды перед водогрейными котлами поддерживают постоянной, для чего осуществляют рециркуляцию части воды из подающего трубопровода в обратный (см. кн. Ионина А. А. и др. Теплоснабжение. - М.: Стройиздат, 1982, рис. 12.6, с. 282), утечки сетевой воды в теплосети компенсируют подпиточной водой; по подпиточному трубопроводу направляют в обратный трубопровод теплосети. Данный аналог принят в качестве прототипа. Недостатками прототипа являются пониженные надежность и экономичность работы котельной из-за необходимости для реализации способа усложненной схемы котельной, а также из-за трудности обеспечения эффективной деаэрации подпиточной воды. Целью настоящего изобретения является повышение надежности и экономичности способа работы отопительной котельной. С этой целью предложен способ работы отопительной котельной, по которому сетевую воду, поступающую от потребителей по обратному трубопроводу теплосети, нагревают в водогрейных котлах и по подающему трубопроводу теплосети направляют потребителям, температуру сетевой воды перед водогрейными котлами поддерживают постоянной, для чего осуществляют рециркуляцию части воды из подающего трубопровода в обратный трубопровод теплосети, утечки сетевой воды в теплосети компенсируют подпиточной водой, которую готовят в вакуумном деаэраторе, для чего в деаэратор подают исходную воду и греющий агент по трубопроводам исходной воды и греющего агента, а деаэрированную воду по подпиточному трубопроводу направляют в обратный трубопровод теплосети, причем рециркуляцию воды осуществляют через трубопровод греющего агента, вакуумный деаэратор и подпиточный трубопровод, а поддержание постоянной температуры сетевой воды перед водогрейными котлами производят путем регулирования расхода воды в трубопроводе греющего агента вакуумного деаэратора. Способ состоит из следующих операций. Сетевую воду, поступающую от потребителей по обратному трубопроводу теплосети, нагревают в водогрейных котлах и по подающему трубопроводу теплосети направляют потребителям. Температуру сетевой воды перед водогрейными котлами поддерживают постоянной, для чего осуществляют рециркуляцию части воды из подающего трубопровода в обратный трубопровод. Утечки сетевой воды в теплосети компенсируют подпиточной водой, которую готовят в вакуумном деаэраторе, для чего в деаэратор подают исходную воду и греющий агент по трубопроводам исходной воды и греющего агента, а деаэрированную воду по подпиточному трубопроводу направляют в обратный трубопровод теплосети. Рециркуляцию воды осуществляют через трубопровод греющего агента, вакуумный деаэратор и подпиточный трубопровод, а поддержание постоянной температуры сетевой воды перед водогрейными котлами производят путем регулирования расхода воды в трубопроводе греющего агента вакуумного деаэратора. Для пояснения способа на чертеже показан фрагмент принципиальной схемы отопительной котельной, которая содержит водогрейные котлы 1, включенные между подающим 2 и обратным 3 трубопроводами теплосети. К подающему трубопроводу 2 подключен трубопровод греющего агента 4, который соединен с вакуумным деаэратором 5 через регулирующий орган 6. В трубопровод исходной воды 7 последовательно включены аппараты химводоочистки 8 и вакуумный деаэратор 5. В трубопровод деаэрированной подпиточной воды 9 последовательно включены бак-аккумулятор подпиточной воды 10 и рециркуляционный насос 11. В обратный трубопровод теплосети 3 включен сетевой насос 12. Между обратным 3 и подающим 2 трубопроводами теплосети включена перемычка 13 с насосом 14. Рассмотрим пример конкретной реализации способа. Сетевую воду, поступающую от потребителей по обратному сетевому трубопроводу 3 в количестве 1000 т/ч, нагревают до 150 o C в водогрейных котлах 1 и по подающему трубопроводу теплосети 2 направляют потребителям. Температуру воды, отпускаемой потребителям, регулируют путем подмешивания обратной сетевой воды через перемычку 13. Температуру обратной сетевой воды перед водогрейными котлами поддерживают постоянной 70 o C, для чего осуществляют рециркуляцию части воды из подающего трубопровода 2 в обратный трубопровод 3. Утечки сетевой воды в теплосети в количестве 200 т/ч компенсируют подпиточной водой, которую готовят в вакуумном деаэраторе 5, для чего в деаэратор подают исходную воду и греющий агент, а деаэрированную воду направляют в обратный трубопровод 3. Рециркуляцию сетевой воды осуществляют через трубопровод греющего агента 4, вакуумный деаэратор 5, бак-аккумулятор 10 и подпиточный трубопровод 9. Поддержание постоянной температуры 70 o C перед водогрейными котлами производится путем регулирования расхода воды в трубопроводе греющего агента 4 вакуумного деаэратора 5. Так, при температуре обратной сетевой воды 60 o C, температуре исходной воды 30 o C через трубопровод 4 и деаэратор 5 пропускают 225 т/ч сетевой воды, при этом температура деаэрированной подпиточной воды составляет 94 o C (в известных способах вакуумную деаэрацию обычно проводят при температуре не более 70 o C). Благодаря деаэрации при повышенном температурном уровне существенно повышается ее качество, а совмещение процесса рециркуляции сетевой воды с обработкой подпиточной воды в вакуумном деаэраторе и подпиткой теплосети позволяет упростить схему котельной, что повышает ее надежность и экономичность.

Формула изобретения

Способ работы отопительной котельной, по которому сетевую воду, поступающую от потребителей по обратному трубопроводу теплосети, нагревают в водогрейных котлах и по подающему трубопроводу теплосети направляют потребителям, температуру сетевой воды перед водогрейными котлами поддерживают постоянной, для чего осуществляют рециркуляцию части воды из подающего трубопровода в обратный трубопровод теплосети, утечки сетевой воды в теплосети компенсируют подпиточной водой, которую по подпиточному трубопроводу направляют в обратный трубопровод теплосети, отличающийся тем, что подпиточную воду готовят в вакуумном деаэраторе, для чего в деаэратор подают исходную воду и греющий агент по трубопроводам исходной воды и греющего агента, а рециркуляцию воды осуществляют через трубопровод греющего агента, вакуумный деаэратор и подпиточный трубопровод, а поддержание постоянной температуры сетевой воды перед водогрейными котлами производят путем регулирования расхода воды в трубопроводе греющего агента вакуумного деаэратора.

Вопрос №19.Автоматизация водогрейных котельных установок

Водогрейные котлы отличаются от паровых наличием водяного контура вместо водо-парового. Это не требует ряда локальных систем регулирования – уровня воды в барабане, температуры пара через пароохладители, продувки котла. С другой стороны появляются новые контуры регулирования в водяном тракте.

Для уменьшения интенсивности наружной коррозии труб водогрейных котлов необходимо поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов. Минимально допустимая температура воды на входе в котлы при работе на природном газе равна 60 С. Для обеспечения этого необходимо подавать некоторое количество горячей воды, вышедшей из водогрейных котлов, снова на вход в котел для смешения с водой из обратного трубопровода и подпиточной водой. Линию, по которой перекачивают нагретую воду с выхода котла на его вход, так же, как и специальный насос, называют рециркуляционными (рис. 26).

С помощью регулировочного клапана в линии рециркуляции регулируется температура входной воды в котел. Во первых, это происходит на период разогрева котла. В это время t вых <60 0 C, tвх<<60 0 C. Для уменьшения коррозии труб котлов требуется уменьшить время разогрева полным открытием линии рециркуляции, не включая сетевые насосы до момента t вых =60C,. После чего следует включить сетевые насосы, а линию рециркуляции постепенно закрывать, обеспечивая t вх =60 0 C. При t обр > 60 0 C линия рециркуляции становится не нужна – регулировочный клапан закрыт. В осенне-весенний период, когда t обр < 60 0 C. линия рециркуляции становится нужна и в установившемся режиме работы,

Для обеспечения расчетной температуры воды в прямом трубопроводе тепловой сети при качественном регулировании подмешивается сетевая вода из обратного трубопровода. Часть воды из обратной линии, минуя котлы, подают по линии перепуска через регулировочный клапан в подающую магистраль, где она, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в прямом трубопроводе.

Наличие линий рециркуляции и перепуска воды приводит к специфичным режимам работы водогрейных котлов. Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества воды, проходящей через них. С другой стороны, при качественном регулировании теплопотребления в стационарном режиме требуется постоянство расхода теплоносителя в тепловой сети, постоянство разницы давлений в прямом и обратном трубопроводах у потребителя для реализации проектных гидравлических настроек теплопотребления. Ручная настройка операторами вышеперечисленных контуров регулирования с помощью обычных задвижек без средств автоматизации, регуляторов не приводят к экономически оправданным результатам.

В водяных котельных, предназначенных для получения горячей воды (не более 150 °С) роль питательных насосов для подачи воды в котел выполняют сетевые насосы. Подпиточные насосы обеспечивают компенсацию невозврата сетевой воды.

В системах отопления все более распространяются водогрейные блочные котельные. Для осуществления безнакипного режима работы устанавливают дозаторы (добавки для умягчения воды). Применение закрытой системы горячего водоснабжения резко уменьшает потребное количество деаэрированной воды. Тепловые схемы котельных для закрытых систем теплоснабжения проще, чем для открытых не только конструктивно. В них уменьшается мощность оборудования химводоподготовки и ниже требования к качеству подпиточной воды.

Тепловые схемы котельных

По своему назначению котельные малой и средней мощности делятся на следующие группы: отопительные, предназначенные для теплоснабжения систем отопления, вентиляции, горячего водоснабжения жилых, общественных и других зданий; производственные, обеспечивающие паром и горячей водой технологические процессы промышленных предприятий; производственно-отопительные, обеспечивающие паром и горячей водой различных потребителей. В зависимости от вида вырабатываемого теплоносителя котельные делятся на водогрейные, паровые и пароводогрейные.

В общем случае котельная установка представляет собой совокупность котла (котлов) и оборудования, включающего следующие устройства. Подачи и сжигания топлива; очистки, химической подготовки и деаэрации воды; теплообменные аппараты различного назначения; насосы исходной (сырой) воды, сетевые или циркуляционные – для циркуляции воды в системе теплоснабжения, подпиточные – для возмещения воды, расходуемой у потребителя и утечек в сетях, питательные для подачи воды в паровые котлы, рециркуляционные (подмешивающие) ; баки питательные, конденсационные, баки-аккумуляторы горячей воды; дутьевые вентиляторы и воздушный тракт; дымососы, газовый тракт и дымовую трубу; устройства вентиляции; системы автоматического регулирования и безопасности сжигания топлива; тепловой щит или пульт управления.

Тепловая схема котельной зависит от вида вырабатываемого теплоносителя и от схемы тепловых сетей, связывающих котельную с потребителями пара или горячей воды, от качества исходной воды. Водяные тепловые сети бывают двух типов: закрытые и открытые. При закрытой системе вода (или пар) отдает свою теплоту в местных системах и полностью возвращается в котельную. При открытой системе вода (или пар) частично, а в редких случаях полностью отбирается в местных установках. Схема тепловой сети определяет производительность оборудования водоподготовки, а также вместимость баков-аккумуляторов.

В качестве примера приведена принципиальная тепловая схема водогрейной котельной для открытой системы теплоснабжения с расчетным температурным режимом 150- 70°С. Установленный на обратной линии сетевой (циркуляционный) насос обеспечивает поступление питательной воды в котел и далее в систему теплоснабжения. Обратная и подающая линии соединены между собой перемычками – перепускной и рециркуляционной. Через первую из них при всех режимах работы, кроме максимального зимнего, перепускается часть воды из обратной в подающую линию для поддержания заданной температуры.

Принципиальная тепловая схема водогрейной котельной

По условиям предупреждения коррозии металла температура воды на входе в котел при работе на газовом топливе должна быть не ниже 60 °С во избежание конденсации водяных паров, содержащихся в уходящих газах. Так как температура обратной воды почти всегда ниже этого значения, то в котельных со стальными котлами часть горячей воды подается в обратную линию рециркуляционным насосом.

В коллектор сетевого насоса из бака поступает подпиточная вода (насос, компенсирующая расход воды у потребителей). Исходная вода, подаваемая насосом, проходит через подогреватель, фильтры химводоочистки и после умягчения через второй подогреватель, где нагревается до 75- 80 °С. Далее вода поступает в колонку вакуумного деаэратора. Вакуум в деаэраторе поддерживается за счет отсасывания из колонки деаэратора паровоздушной смеси с помощью водоструйного эжектора. Рабочей жидкостью эжектора служит вода, подаваемая насосом из бака эжекторной установки. Пароводяная смесь, удаляемая из деаэраторной головки, проходит через теплообменник – охладитель выпара. В этом теплообменнике происходит конденсация паров воды, и конденсат стекает обратно в колонку деаэратора. Деаэрированная вода самотеком поступает к подпиточному насосу, который подает ее во всасывающий коллектор сетевых насосов или в бак подпиточной воды.

Подогрев в теплообменниках химически очищенной и исходной воды осуществляется водой, поступающей из котлов. Во многих случаях насос, установленный на этом трубопроводе (показан штриховой линией), используется также и в качестве рециркуляционного.

Если отопительная котельная оборудована паровыми котлами, то горячую воду для системы теплоснабжения получают в поверхностных пароводяных подогревателях. Пароводяные водоподогреватели чаще всего бывают отдельно стоящие, но в некоторых случаях применяются подогреватели, включенные в циркуляционный контур котла, а также надстроенные над котлами или встроенные в котлы.

Показана принципиальная тепловая схема производственно-отопительной котельной с паровыми котлами, снабжающими паром и горячей водой закрытые двухтрубные водяные и паровые системы теплоснабжения. Для приготовления питательной воды котлов и подпиточной воды тепловой сети предусмотрен один деаэратор. Схема предусматривает нагрев исходной и химически очищенной воды в пароводяных подогревателях. Продувочная вода от всех котлов поступает в сепаратор пара непрерывной продувки, в котором поддерживается такое же давление, как и в деаэраторе. Пар из сепаратора отводится в паровое пространство деаэратора, а горячая вода поступает в водоводяной подогреватель для предварительного нагрева исходной воды. Далее продувочная вода сбрасывается в канализацию или поступает в бак подпиточной воды.

Конденсат паровой сети, возвращенный от потребителей, подается насосом из конденсатного бака в деаэратор. В деаэратор поступает химически очищенная вода и конденсат пароводяного подогревателя химически очищенной воды. Сетевая вода подогревается последовательно в охладителе конденсата пароводяного подогревателя и в пароводяном подогревателе.

Во многих случаях в паровых котельных для приготовления горячей воды устанавливают и водогрейные котлы, которые полностью обеспечивают потребность в горячей воде или являются пиковыми. Котлы устанавливают за пароводяным подогревателем по ходу воды в качестве второй ступени подогрева. Если пароводогрейная котельная обслуживает открытые водяные сети, тепловой схемой предусматривается установка двух деаэраторов – для питательной и подпиточной воды. Для выравнивания режима приготовления горячей воды, а также для ограничения и выравнивания давления в системах горячего и холодного водоснабжения в отопительных котельных предусматривают установку баков-аккумуляторов.

Принципиальная тепловая схема паровой котельной при закрытых сетях.

АРМАТУРА И ГАРНИТУРА КОТЛА

Котельная арматура

Устройства и приборы, служащие для управления работой частей ко­тельного агрегата, находящихся под давлением, для включения, отключения и регулирования трубопроводов для воды и пара, основные предохранительные устройства носят название арматуры.

По своему назначению арматуру разделяют на запорную, регулирую­щую, продувочную и предохранительную.

Арматуру выполняют с принудительным приводом и самодействующей.

По конструкции приводную арматуру разделяют на вентили, задвижки и краны, а самодействующую - на предохранительные и обратные клапаны и конденсатоотводчики.

К арматуре условно относят также водомерные стекла и другие водоуказательные приборы.

Вентили и задвижки

Вентили применяют в качестве регулирующих и запорных устройств (рис. 3). Как запорную арматуру их применяют при диаметрах прохода до 109-150 мм.

а - запорный фланцевый; б - регулирующий:

1 - корпус; 2 - затвор; 3 - фланец; 4 -сшгьниковое уплотнение;

5 - шпиндель; 6 - штл рвач (маховик); 7 - траверса; 8 - крышка;

9 - клапанное седло

В запорном вентиле уплотняющая поверхность клапана плотно примы­кает к поверхности седла. Вентиль состоит из корпуса, крышки, шпинделя, на котором висит клапан. В корпусе имеется седло клапана. В месте прохода шпинделя через крышку установлено сальниковое уплотнение.

В регулирующем вентиле клапан имеет переменное сечение. Это дает возможность изменять проходное сечение. Регулирующий клапан выполняют в виде профилированной иглы, пустотелого золотника и т. д. В полностью за­крытом состоянии они не обеспечивают полной плотности. Обычно регули­рующие клапаны рассчитывают на работу с перепадом давления 1,0 МПа.

Основным показателем работы регулирующего клапана является его ха­рактеристика (зависимость относительного расхода среды от степени откры­тия клапана) (рис. 3 б).

Для целей регулирования наиболее благоприятна линейная характери­стика, для чего требуется выполнение регулирующих органов со сложным профилем открывающихся окон для перетока среды. Регулирующий клапан золотникового типа имеет пустотелый золотник с профилированными окнами, который шпинделем приводится в поступательное движение. При перемеще­нии золотника относительно двух седел происходит изменение степени открытия окон.

В скальчатых регулирующих клапанах регулирующий орган выполнен в виде скалки, имеющей коническую форму вблизи седел. При перемещении скалки изменяется кольцевой зазор между ней и седлами клапана.

В игольчатых регулирующих клапанах регулировка достигается за счет перемещения профилированной иглы.

Задвижки в основном используют в качестве запорных органов (рис. 4), хотя имеются и специальные конструкции регулировочных задви­жек. В задвижках запирающий орган (клин, диски) перемещается в направле­нии, перпендикулярном потоку. По принципу прижатия запорного органа за­движки разделяют на клиновые, с параллельно-принудительным затвором и самоуплотняющиеся.

В клиновых задвижках запирающий орган выполняют из целого или разрезного клина.

Коэффициент гидравлического сопротивления задвижек b = 0,25-0,8, а у запорных вентилей b = 2,5-5.

Задвижки

а - клиновая бесфланцевая с приводом; б - параллельная фланцевая

1- уплотнительные диски; 2 - распорное устройство; 3 - корпус;

4 - крышка; 5 - рычаг дистанционного приво­да; 6 - маховик; 7 - зубчатое колесо; 8 - траверса; 9 - сштьниковое уплотнение;

10 -шпиндель; 11- ушготнительное кольцо.

Клапаны

Клапаном называется запорный или регулирующий орган автоматиче­ского действия.

У паровых котлов имеются обратные, питательные, редукционные и пре­дохранительные клапаны.

Обратный клапан препятствует движению рабочей среды в обратном направлении. Так, например, обратные клапаны на питательных линиях за­крываются при аварийном падении давления в питательных трубопроводах и препятствует выпуску воды из котла.

По конструкции обратные клапаны подразделяют на подъемные и пово­ротные.

В подъемных клапанах (рис. 5, а) запорным органом является тарелка (золотник) 2, хвостовик которой входит в направляющий канал прилива крыш­ки 1.

В поворотных клапанах (рис.5, б) тарелка 6 поворачивается вокруг оси 7 и перекрывает проход.

Обратные клапаны устанавливают в котельных обычно на напорных ли­ниях центробежных насосов, на питательных линиях перед котлом для про­пуска воды только в одном направлении и в других местах, где имеется опас­ность обратного движения среды.


а - подъемный; б - поворотный:

1 - крышка; 2 - золотник; 3 - корпус; 4 - ось клапана; 5 - рычаг;

6 - тарелка; 7 - ось рычага.

Питательный клапан служит для автоматического регулирования пита­ния котла в соответствии с расходом пара.

В клапанах, устанавливаемых на современных котлах, вода прижимает к седлу вертикальный шибер.

Предохранительный клапан представляет собой запорное устройство, которое автоматически открывается при повышении давления. Устанавливают его на барабанных котлах, паропроводах, резервуарах и др. При открытии кла­пана среда сбрасывается в атмосферу. Предохранительные клапаны могут быть рычажными (рис. 7 а), пружинными (рис. 7 б) и импульсными (рис. 8).

а - однорычажный; б - пружинный:

1 - корпус; 2 - затвор; 3 - шпиндель;

4 - крышка; 5 -рычаг; 6 - груз; 7 - пружина

В рычажном клапане запирающий орган (тарелка) удерживается в за­крытом состоянии грузом. В пружинном предохранительном клапане давле­нию среды на тарелку противодействует сила натяга пружины.

Предохранительные клапаны выполняют как одинарными, так и двой­ными. В зависимости от высоты подъема тарелки клапаны разделяют на низ­коподъемные и полно подъемные. В полно подъемных клапанах площадь, от­крываемая проходу среды при подъеме клапана, превышает проход седла. Они обладают большей пропускной способностью, чем низкоподъемные.

В соответствии с правилами каждый котел паропроизводительностью более 100 кг/ч должен быть снабжен не менее чем двумя предохранительными клапанами, один из которых должен быть контрольным. На котлах производи­тельностью 100 кг/ч и менее может допускаться установка одного предохрани­тельного клапана.

Суммарная пропускная способность клапанов должна быть не менее ча­совой производительности котла. При наличии у котла неотключаемого паро­перегревателя часть предохранительных клапанов с пропускной способностью не менее 50 % суммарной пропускной способности должна быть установлена на выходном коллекторе.

Для жаротрубных водогрейных котлов Колви завод-изготовитель рекомендует установку рециркуляционной линии, которая будет обеспечивать постоянное поддержание температуры теплоносителя на входе в котел на уровне 55-60 градусов. Рециркуляция необходима для противодействия возможному возникновению конденсации на поверхностях котла, что особенно возможно при работе котла в режиме 50% и ниже от номинальной мощности.

Технической документацией на жаротрубные котлы не рекомендуется работа котла в режиме мощности ниже 40% от номинала, поскольку тут возникает следующее неблагоприятное явление: относительно низкая температура дымовых газов усугубляется низкими значениями температуры теплоносителя на возвратной линии, что приводит к образованию конденсата на стальных конструкциях котла с известными последствиями. Потому необходимо обеспечивать на "обратке" котла указанные выше 55-60 градусов, чего вполне достаточно для защиты от "точки росы", которую дымовые газы могут достигнуть.

Для организации подмеса горячего теплоносителя в "обратную" линию жаротрубного котла есть 2 основных варианта:

  • Установка подмешивающего трехходового клапана.
  • Установка циркуляционного насоса (насоса рециркуляции).

На практике чаще всего используется именно 2-й вариант ― установка рециркуляционного насоса. Такой насос устанавливается на перемычке между подающей и возвратной линией, в непосредственной близости от котла. Обязательным условием является удобство доступа обслуживающего персонала котельной к насосу и прочим компонентам рециркуляционной линии.

Ниже приведем типичную схему линии рециркуляции:

На приведенной схеме указана типичная схема рециркуляции газового котла (1), расположенная перемычкой между подающей Т1 (2) и возвратной Т2 (3) линиями. Непосредственно насос рециркуляции (4) с ответными фланцами должен устанавливаться вместе с запорной арматурой (6) на входе и выходе теплоносителя для возможности демонтажа насоса при необходимости. Так же, перед и после насоса желательна установка манометров (5) для контроля давления теплоносителя и визуального определения значений перепадов напора. После напорного патрубка насоса необходима установка обратного клапана (7) для обеспечения корректности направления взаимной циркуляции воды на возвратной и рециркуляционной линиях.

Методика расчета необходимых параметров насоса рециркуляции :

Расчетными параметрами для данных насосов являются:

  • Необходимый расход теплоносителя.
  • Расчетный напор насоса, позволяющий преодолевать гидравлическое сопротивление всех элементов: котла, труб, запорной арматуры. При этом должен обеспечиваться необходимый расход теплоносителя (см. выше).

Расход теплоносителя для рециркуляционной линии определяется посредством тепловой мощности котла, расхода теплоносителя через котел и температурного режима работы котла. Расчетным значением расхода рециркуляционного насоса является 1/3 от расхода теплоносителя через котел. Ниже приведем пример расчета:

Имеется газовый жаротрубный котел Колви 250 с тепловой мощностью 291 квт. КПД котла 92%. Его температурный режим составляет 95/70 градусов.

1. Определение теплопродуктивности котла: 291х0,92=268 квт

2. Определение температурного градиента: 95-70=25 градусов.

3. Определение расхода воды через котел: (0,86х268)/25 = 9,22 м.куб. в час.

4. Определение расхода воды для рециркуляционного насоса: 9,22/3 = 3,08 м.куб. в час.

Расчетный напор насоса рециркуляции, как было приведено выше, определяется местными сопротивлениями элементов котельной. Как показывает практика, допустимыми являются параметры напора 2-4 метра вод. ст. (0,2-0,4 бар).



Понравилась статья? Поделитесь ей