Контакты

Об оптимальной скорости движения воды в трубопроводах теплосетей

Долго горячая доходит до дальней батареи. И эта батарея внизу холодная, хотя открыта на всю. А все до нее почти закрыты и так же внизу холодные. двухтрубная система. когда предпоследнюю батарею открываю на полную, то вся вода через нее идет и последней вообще ничего не достается. поэтому прикрыл понемногу все из такого расчета чтобы верх был горячим, а низ еле теплым. Тогда всем хватает. Воздух, как мог спускал. Если поднять температура воды (когда морозы), то дальняя батарея горячее. Обратка еле теплая. Всего около 130 элементов батарей плюс примерно 180м трубы на 20 пластиковой. Батареи алюминиевые. Получается 2 ветки по 40 метров подающей трубы и столько же обратной. Плюс к самим батареям от труб подвод увод. Котел Baxi Slim 1.300i на 30КВт с собственным насосом и баком. Создается впечатление, что вода идет медленно, возможно из-за чего-то что ей мешает. На эту мысль натолкнул факт, что когда делали первое включение, то не пошло, все перегревалось. Спец от конторы продавца сказал, что мы перепутали подачу с обраткой, хотя я неоднократно проверял по инструкции к котлу. После того как монтажник перепаял наоборот, все сразу пошло, но выяснилось, что мы не перепутали. А когда вернули обратно, снова не идет и перегревается. После того как монтажник догадался спустить воздух из системы, все пошло, но хуже. После первого года эксплуатации убрал мусор из сетки фильтра, но это практически не повлияло. У меня еще и на подаче фильтр. С него я сетку убрал, но так же без результатно. Вот прошло еще 2 года, пытаюсь понять что не так. Или насоса не хватает все же. Но у меня 200м2 отапливается (дом с невысокой мансардой), а котел рассчитан на гораздо больше, значит насос так же должен быть рассчитан на такой объем воды. Мерить давление чтобы найти место затора бесполезно. Оно везде будет одинаковым и составляет 1 атм по манометру, который в котле. Вот и не пойму что еще проверять и где смотреть чтобы найти причину такого состояния системы отопления частного дома. Поставить расходомер проблемно, надо паять, да и не дешево это. В свое время старался по максимуму сделать саму систему отопления с запасом. Чтобы не мерзнуть. Хотя отделки еще нет и не известно когда будет, особо нигде не дует. Теплопотери по расходу газа если мерить, то примерно 0,5 Вт на м2 на градус, если не ошибся в расчетах. При площади стен, пола и крыши (потолка на втором этаже нет) 600м2 средней разнице температуры между улицей и домом 30 градусов получилось на отопление 720м3 газа в месяц. Итого около 10КВт в час, что намного меньше мощности котла (30КВт). В паспорте котла написано 1,2м3 воды в час при напоре 3м.

Журнал «Новости теплоснабжения» № 1, 2005 г., www.ntsn.ru

К.т.н. О.Д. Самарин, доцент, Московский государственный строительный университет

Существующие в настоящее время предложения относительно оптимальной скорости движения воды в трубопроводах систем теплоснабжения (до 3 м/с) и допустимых удельных потерях давления R (до 80 Па/м) основаны главным образом на технико-экономических расчетах. Они учитывают, что с ростом скорости уменьшаются сечения трубопроводов и снижается объем теплоизоляции, т.е. сокращаются капиталовложения в устройство сети, но одновременно увеличиваются эксплуатационные затраты на перекачку воды из-за роста гидравлического сопротивления, и наоборот. Тогда оптимальная скорость соответствует минимуму приведенных затрат за расчетный срок амортизации системы.

Однако в условиях рыночной экономики обязательно следует принимать во внимание дисконтирование эксплуатационных издержек Э (руб./год) и капитальных затрат К (руб.). В этом случае формула для вычисления совокупных дисконтированных затрат (СДЗ), при использовании заемных средств, приобретает следующий вид :

В данном случае - коэффициенты дисконтирования капитальных и эксплуатационных затрат, вычисляемые в зависимости от расчетного срока амортизации Т (лет), и нормы дисконта р. Последняя учитывает уровень инфляции и рисков капиталовложений, т.е., в конечном счете, степень нестабильности экономики и характер изменения текущих тарифов, и определяется обычно методом экспертных оценок . В первом приближении величина р соответствует годовому проценту за банковский кредит. На практике ее можно принимать в размере ставки рефинансирования ЦБ РФ. Начиная с 15 января 2004 г., она равна 14% годовых.

Причем заранее неизвестно, что минимум СДЗ с учетом дисконтирования будет соответствовать такому же уровню скорости воды и удельных потерь, которые рекомендуются в литературе . Поэтому целесообразно провести новые расчеты с использованием современного диапазона цен на трубопроводы, теплоизоляцию и электроэнергию. В этом случае, если считать, что трубопроводы функционируют в условиях квадратичного режима сопротивления, и вычислять удельные потери давления по формулам, приведенным в литературе , для оптимальной скорости движения воды можно получить следующую формулу:

Здесь К ти - коэффициент удорожания трубопроводов за счет наличия теплоизоляции. При применении отечественных материалов типа минераловатных матов можно принять К ти = 1,3. Параметр С D представляет собой удельную стоимость одного метра трубопровода (руб./м 2), отнесенную к внутреннему диаметру D (м). Поскольку в прайс-листах обычно указывается цена в рублях за тонну металла С м, пересчет необходимо производить по очевидному соотношению , где - толщина стенки трубопровода (мм), =7,8 т/м 3 - плотность материала трубопроводов. Величина С эл соответствует тарифу на электроэнергию. По данным ОАО «Мосэнерго» на первую половину 2004 г. для коммунальных потребителей С эл = 1,1723 руб./кВтч.

Формула (2) получена из условия d(СДЗ)/dv=0. Определение эксплуатационных затрат производилось с учетом того, что эквивалентная шероховатость стенок трубопроводов равна 0,5 мм , а КПД сетевых насосов составляет около 0,8. Плотность воды p w считалась равной 920 кг/м 3 для характерного диапазона температур в тепловой сети. Кроме того, предполагалось, что циркуляция в сети осуществляется круглогодично, что вполне оправданно, исходя из нужд горячего водоснабжения.

Анализ формулы (1) показывает, что для больших сроков амортизации Т (10 лет и выше), характерных для тепловых сетей, отношение коэффициентов дисконтирования практически равно своему предельному минимальному значению р/100. В этом случае выражение (2) дает наименьшую экономически целесообразную скорость воды, соответствующую условию, когда годовой процент за кредит, взятый на строительство, равен годовой прибыли от снижения эксплуатационных издержек, т.е. при бесконечном сроке окупаемости. При конечном сроке оптимальная скорость будет выше. Но в любом случае эта скорость будет превышать вычисленную без учета дисконтирования, поскольку тогда, как легко убедиться, , а в современных условиях пока получается 1/Т< р/100.

Значения оптимальной скорости воды и соответствующие им целесообразные удельные потери давления, вычисленные по выражению (2) при среднем уровне C D и предельном соотношении , приведены на рис.1. Следует иметь в виду, что в формулу (2) входит величина D, которая заранее неизвестна, поэтому сначала целесообразно задаться средним значением скорости (порядка 1,5 м/с), определить диаметр по заданному расходу воды G (кг/ч), а затем вычислить фактическую скорость и оптимальную скорость по (2) и проверить, будет ли v ф больше, чем v опт. В противном случае следует диаметр уменьшить и повторить расчет. Можно также получить соотношение непосредственно между G и D. Для среднего уровня C D оно приведено на рис. 2.

Таким образом, экономически оптимальная скорость воды в тепловых сетях, вычисленная для условий современной рыночной экономики, в принципе не выходит за пределы, рекомендованные в литературе . Однако, эта скорость меньше зависит от диаметра, чем при соблюдении условия по допустимым удельным потерям, и при малых и средних диаметрах оказываются целесообразными повышенные значения R вплоть до 300 - 400 Па/м. Следовательно, предпочтительнее дополнительно снижать капитальные вложения (в

данном случае - уменьшать сечения и увеличивать скорость), и тем в большей степени, чем выше норма дисконта. Поэтому имеющееся в ряде случаев на практике стремление к сокращению единовременных затрат при устройстве инженерных систем получает теоретическое обоснование.

Литература

1. А.А Ионин и др. Теплоснабжение. Учебник для вузов. - М.: Стройиздат, 1982, 336 с.

2. В.Г.Гагарин. Критерий окупаемости затрат на повышение теплозащиты ограждающих конструкций зданий в различных странах. Сб. докл. конф. НИИСФ, 2001, с. 43 - 63.

Гидравлический расчёт трубопроводов системы отопления

Как видно из названия темы в расчёте участвуют такие параметры, связанные с гидравликой, как расход теплоносителя, скорость потока теплоносителя, гидравлическое сопротивление трубопроводов и арматуры. При этом между указанными параметрами существует полная взаимосвязь.

Например при увеличении скорости теплоносителя увеличивается гидравлическое сопротивление трубопровода. При увеличении расхода теплоносителя через трубопровод определённого диаметра скорость теплоносителя возрастает и естественно растёт гидравлическое сопротивление при этом изменяя диаметр в большую сторону скорость и гидравлическое сопротивление снижаются. Анализируя эти взаимосвязи гидравлический расчёт превращается в своего рода анализ параметров для обеспечения надёжной и эффективной работы системы и снижения затрат на материалы.

Система отопления состоит из четырёх основных компонентов это трубопроводы, отопительные приборы, теплогенератор, регулирующая и запорная арматура. Все элементы системы имеют свои характеристики гидравлического сопротивления и должны учитываться при расчёте. При этом, как было сказано выше, гидравлические характеристики не являются постоянными. Производители отопительного оборудования и материалов обычно приводят данные по гидравлическим характеристикам (удельные потери давления) на производимое ими материалы или оборудование.

Например:

Номограмма для гидравлического расчёта полипропиленовых трубопроводов производства фирмы FIRAT (Фират)

Удельные потери давления (потеря напора) трубопровода указано для 1 м.п. трубы.

Проанализировав номограмму вы более наглядно увидите ранее указанные взаимосвязи между параметрами.

Итак суть гидравлического расчёта мы определили.

Теперь пройдёмся отдельно по каждому из параметров.

Расход теплоносителя

Расход теплоносителя, для более широкого понимания количество теплоносителя, напрямую зависит от тепловой нагрузки которую теплоноситель должен переместить от теплогенератора к отопительному прибору.

Конкретно для гидравлического расчёта требуется определить расход теплоносителя на заданном расчётном участке. Что такое расчётный участок. Расчетным участком трубопровода принимается участок постоянного диаметра с неизменным расходом теплоносителя. Например если в состав ветки входят десять радиаторов (условно каждый прибор мощностью 1 кВт) а общий расход теплоносителя рассчитан на перенос теплоносителем тепловой энергии равной 10 кВт. То первым участком будет участок от теплогенератора до первого в ветке радиатора (при условии что по всему участку постоянный диаметр) с расходом теплоносителя на перенос 10 кВт. Второй участок будет находится между первым и вторым радиатором с расходом на перенос тепловой энергии 9 кВт и так далее вплоть до последнего радиатора. Рассчитывается гидравлическое сопротивление как подающего трубопровода так и обратного.

Расход теплоносителя (кг/час) для участка рассчитывается по формуле:

G уч = (3,6 * Q уч) / (с * (t г - t о)) кг/ч

Q уч - тепловая нагрузка участка Вт. Например для вышеуказанного примера тепловая нагрузка первого участка равна 10 кВт или 1000 Вт.

с = 4,2 кДж/(кг·°С) - удельная теплоемкость воды

t г - расчетная температура горячего теплоносителя в системе отопления, °С

t о - расчетная температура охлажденного теплоносителя в системе отопления, °С.

Скорость потока теплоносителя.

Минимальный порог скорости теплоносителя рекомендуют принимать в пределах 0,2 - 0,25 м/с. На меньших скоростях начинается процесс выделения избыточного воздуха содержащегося в теплоносителе что может приводить к образованию воздушных пробок и как следствие полный либо частичный отказ работы системы отопления. Верхний порог скорости теплоносителя лежит в диапазоне 0,6 - 1,5 м/с. Соблюдение верхнего порога скорости позволяет избежать возникновение гидравлических шумов в трубопроводах. На практике было определён оптимальный диапазон скорости 0,3 - 0,7 м/с.

Более точный диапазон рекомендованной скорости теплоносителя зависит от материала трубопроводов применяемых в системе отопления а точнее от коэффициента шероховатости внутренней поверхности трубопроводов. Например для стальных трубопроводов лучше придерживаться скорости теплоносителя от 0,25 до 0,5 м/с для медных и полимерных (полипропиленовые, полиэтиленовые, металлопластиковые трубопроводы) от 0,25 до 0,7 м/с либо воспользоваться рекомендациями производителя при их наличии.

Методика расчета теплообменных аппаратов

Конструкции теплообменных аппаратов весьма разнообразны, однако существует общая методика теплотехнических расчетов, которую можно применять для частных расчетов в зависимости от имеющихся исходных данных.

Существуют два вида теплотехнических расчетов теплообменных аппаратов: конструкторский (проектный) и поверочный.

Конструкторский расчет производится при проектировании теплообменного аппарата, когда заданы расходы теплоносителей и их параметры. Цель конструкторского расчета определение поверхности теплообмена и конструктивных размеров выбранного аппарата.

Поверочный расчет выполняется для выявления возможности использования имеющихся или стандартных теплообменных аппаратов для тех технологических процессов, в которых используется данный аппарат. При поверочном расчете заданы размеры аппарата и условия его работы, а неизвестной величиной является производительность теплообменного аппарата (фактическая). Поверочный расчет производят для оценки работы аппарата при режимах, отличных от номинальных. Таким. образом, целью поверочного расчета является выбор условий, обеспечивающих оптимальный режим работы аппарата.

Конструкторский расчет состоит из теплового (теплотехнического), гидравлического и механического расчетов.

Последовательность конструкторского расчета . Для выполнения расчета должно быть задано: 1) тип теплообменного аппарата (змеевиковый, кожухотрубчатый, труба в трубе, спиральный и др.); 2) наименование нагреваемого и охлаждаемого теплоносителей (жидкость, пар или газ); 3) производительность теплообменного аппарата (количество одного из теплоносителей, кг/с); 4) начальные и конечные температуры теплоносителей.

Требуется определить: 1) физические параметры и скорости движения теплоносителей; 2) расход нагревающего или охлаждающего теплоносителя на основании теплового баланса; 3) движущую силу процесса, т.е. среднюю разность температур; 4) коэффициенты теплоотдачи и теплопередачи; 5) поверхность теплопередачи; 6) конструктивные размеры аппарата: длину, диаметр и число витков змеевика, длину, число труб и диаметр кожуха в кожухотрубчатом аппарате, число витков и диаметр корпуса в спиральном теплообменнике и др.; 7) диаметры штуцеров для входа и выхода теплоносителей.

Теплопередача между теплоносителями существенно изменяется в зависимости от физических свойств и параметров теплообменивающихся сред, а также от гидродинамических условий движения теплоносителей.

В задании на проектирование заданы рабочие среды (теплоносители), начальные и конечные их температуры. Нужно определить среднюю температуру каждой среды и при этой температуре найти по справочным таблицам значения их физических параметров.


Среднюю температуру среды можно приближенно определить как среднее арифметическое из начальной t н и конечной t к температур.

Основными физическими параметрами рабочих сред являются: плотность, вязкость, удельная теплоемкость, коэффициент теплопроводности, температура кипения, скрытая теплота испарения или конденсации и др.

Эти параметры представлены в виде таблиц, диаграмм, монограмм в справочниках .

При конструировании теплообменной аппаратуры надо стремиться к созданию таких скоростей потоков теплоносителей (их рабочих сред), при которых коэффициенты теплоотдачи и гидравлические сопротивления были бы экономически выгодными.

Выбор целесообразной скорости имеет большое значение для хорошей работы теплообменного аппарата, так как с увеличением скорости значительно возрастают коэффициенты теплоотдачи и уменьшается поверхность теплообмена, т.е. аппарат имеет меньшие конструктивные размеры. Одновременно с повышением скорости увеличивается гидравлическое сопротивление аппарата, т.е. расход электроэнергии на привод насоса, а также опасность гидравлического удара и вибрации труб. Минимальное значение скорости определяется достижением турбулентного движения потока {для легко подвижных, маловязких жидкостей критерий Рейнольдса Rе > 10000).

Средняя скорость движения среды определяется из уравнений объемного и массового расходов:

М/с; , кг/(м 2 с), (9.1)

где – средняя линейная скорость, м/с; V – объемный рас ход, м 3 /с; S – площадь сечения потока, м 2 ; – средняя массовая скорость, кг/(м 2 /с); G – массовый расход, кг/с.

Зависимость между массовой и линейной скоростью:

, (9.2)

где – плотность среды, кг/м 3 .

Для применяемых диаметров труб (57, 38 и 25 мм) рекомендуется принимать скорость жидкостей практически 1,5 - 2 м/с, не выше 3 м/с, низший предел скорости для большинства жидкостей составляет 0,06 - 0,3 м/с. Скорость, соответствующая Rе = 10000, для маловязких жидкостей в большинстве случаев не превышает 0,2 - 0,3 м/с. Для вязких жидкостей турбулентность потока достигается при значительно больших скоростях, поэтому при расчетах приходится допускать слаботурбулентный или даже ламинарный режим.

Для газов при атмосферном давлении допускаются массовые скорости 15 - 20 кг/(м 2 с), низший предел 2 - 2,5 кг/(м 2 с), а линейные скорости до 25 м/с; для насыщенных паров при конденсации рекомендуется задаваться скоростью до 10 м/с.

Скорости движения рабочих сред в патрубках штуцеров: для насыщенного пара 20 – 30 м/с; для перегретого пара – до 50 м/с; для жидкостей – 1,5 - 3 м/с; для конденсата греющего пара – 1 - 2 м/с.

При проведении дальнейших расчетов мы будем использовать все основные гидравлические параметры, в том числе расход теплоносителя, гидравлическое сопротивление арматуры и трубопроводов, скорость теплоносителя и т.д. Между данными параметрами есть полная взаимосвязь, на что и нужно опираться при расчетах. сайт

К примеру, если повысить скорость теплоносителя, одновременно будет повышаться гидравлическое сопротивление у трубопровода. Если повысить расход теплоносителя, с учетом трубопровода заданного диаметра, одновременно возрастет скорость теплоносителя, а также гидравлическое сопротивление. И чем больше будет диаметр трубопровода, тем меньше будет скорость теплоносителя и гидравлическое сопротивление. На основе анализа данных взаимосвязей, можно превратить гидравлический (программа расчета есть в сети) в анализ параметров эффективности и надежности работы всей системы, что, в свою очередь, поможет снизить расходы на использующиеся материалы.

Отопительная система включает в себя четыре базовых компонента: теплогенератор, отопительные приборы, трубопровод, запорная и регулирующая арматура. Данные элементы имеют индивидуальные параметры гидравлического сопротивления, которые нужно учесть при проведении расчета. Напомним, что гидравлические характеристики не отличаются постоянством. Ведущие производители материалов и отопительного оборудования в обязательном порядке указывают информацию по удельным потерям давления (гидравлические характеристики) на производимое оборудование или материалы.

Например, расчет для полипропиленовых трубопроводов компании FIRAT существенно облегчается за счет приведенной номограммы, в которой указываются удельные потери давления или напора в трубопроводе для 1 метра погонного трубы. Анализ номограммы позволяет четко проследить обозначенные выше взаимосвязи между отдельными характеристиками. В этом и состоит основная суть гидравлических расчетов.


Гидравлический расчет систем водяного отопления: расход теплоносителя

Думаем, вы уже провели аналогию между термином «расход теплоносителя» и термином «количество теплоносителя». Так вот, расход теплоносителя будет напрямую зависеть от того, какая тепловая нагрузка приходится на теплоноситель в процессе перемещения им тепла к отопительному прибору от теплогенератора.

Гидравлический расчет подразумевает определение уровня расхода теплоносителя, касательно заданного участка. Расчетный участок представляет собой участок со стабильным расходом теплоносителя и с постоянным диаметром.

Гидравлический расчет систем отопления: пример

Если ветка включает в себя десять киловаттных радиаторов, а расход теплоносителя рассчитывался на перенос энергии тепла на уровне 10 киловатт, то расчетный участок будет представлять собой отрезом от теплогенератора до радиатора, который в ветке является первым. Но только при условии, что данный участок характеризуется постоянным диаметром. Второй участок располагается между первым радиатором и вторым радиатором. При этом, если в первом случае высчитывался расход переноса 10-киловаттной тепловой энергии, то на втором участке расчетное количество энергии будет составлять уже 9 киловатт, с постепенным уменьшением по мере проведения расчетов. Гидравлическое сопротивление должно рассчитываться одновременно для подающего и обратного трубопровода.

Гидравлический расчет однотрубной системы отопления подразумевает вычисление расхода теплоносителя

для расчетного участка по следующей формуле:

Gуч= (3,6*Qуч)/(с*(tг-tо))

Qуч –тепловая нагрузка расчетного участка в ваттах. К примеру, для нашего примера нагрузка тепла на первый участок будет составлять 10000 ватт или 10 киловатт.

с (удельная теплоемкость для воды) – постоянная, равная 4,2 кДж/(кг °С)

tг –температура горячего теплоносителя в отопительной системе.

tо –температура холодного теплоносителя в отопительной системе.

Гидравлический расчет системы отопления: скорость потока теплоносителя

Минимальная скорость теплоносителя должна принимать пороговое значение 0,2 — 0,25 м/с. Если скорость будет меньше, из теплоносителя будет выделяться избыточный воздух. Это приведет к появлению в системе воздушных пробок, что, в свою очередь, может служить причиной частичного или полного отказа отопительной системы. Что касается верхнего порога, то скорость теплоносителя должна достигать 0,6 — 1,5 м/с. Если скорость не будет подниматься выше данного показателя, то в трубопроводе не будут образовываться гидравлические шумы. Практика показывает, что оптимальный скоростной диапазон для отопительных систем составляет 0,3 — 0,7 м/с.

Если есть необходимость рассчитать диапазон скорости теплоносителя более точно, то придется брать в расчет параметры материала трубопроводов в отопительной системе. Точнее, вам понадобится коэффициент шероховатости для внутренней трубопроводной поверхности. К примеру, если речь идет о трубопроводах из стали, то оптимальной считается скорость теплоносителя на уровне 0,25 — 0,5 м/с. Если трубопровод полимерных или медный, то скорость можно увеличить до 0,25 – 0,7 м/с. Если хотите перестраховаться, внимательно почитайте, какая скорость рекомендуется производителями оборудования для систем отопления. Более точный диапазон рекомендованной скорости теплоносителя зависит от материала трубопроводов применяемых в системе отопления а точнее от коэффициента шероховатости внутренней поверхности трубопроводов. Например для стальных трубопроводов лучше придерживаться скорости теплоносителя от 0,25 до 0,5 м/с для медных и полимерных (полипропиленовые, полиэтиленовые, металлопластиковые трубопроводы) от 0,25 до 0,7 м/с либо воспользоваться рекомендациями производителя при их наличии.

Расчет гидравлического сопротивления системы отопления: потеря давления

Потеря давления на определенном участке системы, которую также называют термином «гидравлическое сопротивление», представляет собой сумму всех потерь на гидравлическое трение и в локальных сопротивлениях. Данный показатель, измеряемый в Па, высчитывается по формуле:

ΔPуч=R* l + ((ρ * ν2) / 2) * Σζ

где
ν — скорость используемого теплоносителя, измеряемая в м/с.

ρ — плотность теплоносителя, измеряемая в кг/м3.

R –потери давления в трубопроводе, измеряемые в Па/м.

l – расчетная длина трубопровода на участке, измеряемая в м.

Σζ — сумма коэффициентов локальных сопротивлений на участке оборудования и запорно-регулирующей арматуры.

Что касается общего гидравлического сопротивления, то оно представляет собой сумму всех гидравлических сопротивлений расчетных участков.



Понравилась статья? Поделитесь ей