Контакты

Как сделать вентиляционный дефлектор своими руками — от чертежа до готового устройства. Дефлекторы для вентиляции: изготовление, устройство, расчет турбодефлектора Турбина вентиляционная своими руками чертежи

Невероятно! Но скоро это произойдет. Альтернативные источники энергии третьего поколения перевернут мир в целом. Начало уже заложено. Ветряные турбины - вот электроэнергетическое будущее человечества.

Введение

Несмотря на то что альтернативным видам энергетики, таким как ветряные турбины, например, все еще незаслуженно мало уделяется внимания, они продолжают усиленно развиваться. Возможно, в скором времени сильные мира сего поймут, что невменяемая добыча полезных ископаемых больше приносит вреда, чем пользы, и природные виды энергетики прочно войдут в нашу повседневную жизнь. Такая надежда тесно связана с тем, что некоторое время назад было объявлено о появлении ветрогенератора третьего поколения.

Что такое ветряной генератор третьего поколения

Традиционно принято считать, что устройствами первого поколения, которые преобразовывали энергию ветра, были обычные корабельные паруса и мельничные крылья. Чуть более века назад, с развитием авиации, появился ветрогенератор второго поколения - механизм, в основе работы которого лежали принципы аэродинамики крыла.

Это был прорыв того времени! Хотя, если взять в целом, то ветряки второго поколения маломощны, так как из-за конструктивных особенностей не могут работать при сильных ветрах. Поэтому для того чтобы получать больше электроэнергии приходилось увеличивать в размерах, что тянуло за собой дополнительные финансовые расходы на разработку, производство, установку и его эксплуатацию. Естественно, что долго так оставаться не могло.

В начале 2000-х готов специалисты-разработчики объявили о появлении ветрогенератора третьего поколения - ветротурбины. Конструкция, принцип работы, установка, а самое главное мощность нового устройства коренным образом отличается от его предшественников.

Устройство

Простота. Это именно то слово, которым можно охарактеризовать конструкцию ветротурбинного генератора. По сравнению с лопастными ветрогенераторами, ветряная турбина имеет гораздо меньшее количество рабочих узлов и гораздо больше неподвижных элементов, благодаря чему более стойко переносит различные статические и динамические нагрузки.

Устройство ветротурбины:

  • обтекатель, бывает внутренний и наружный;
  • обтекатель узла турбогенератора;
  • гондола;
  • турбина;
  • генератор;
  • динамичный крепежный узел.

Из дополнительных систем ветрогенератор оснащен блоками инвертирования, аккумуляции и управления. Отсутствуют традиционные для лопастного ветрогенератора системы регулировки лопастей и ориентации на ветер. Последнюю заменяет обтекатель, который также выступает в роли сопла, улавливает ветер и увеличивает его мощность. Если учитывать, что энергия ветряного потока равняется его скорости в кубе V3, то благодаря наличию сопла эта формула выглядит следующим образом: V3х4 = Eх64. При этом благодаря своей цилиндрической конструкции обтекатель имеет свойство самонастраиваться на направление ветра.

Преимущества

Любой новый продукт или изобретение всегда должны существенным образом выделяться на фоне своих предшественников, и обязательно в лучшую сторону. Все это можно сказать и про новый ветрогенератор с турбоконструкцией. Одно из главных преимуществ ветротурбины - это ее устойчивость к сильным ветрам. Ее конструкция устроена таким образом, что она будет эффективно и безопасно работать за пределами, которые для обычных лопастных ветряков, являются критическими: от 25 м/сек до 60 м/сек. Но это не единственное преимущество, которыми обладает ветряная турбина, их несколько:

  1. Отсутствие инфразвуковых волн. Наконец-то ученым удалось решить одну из важных проблем, которыми обладают ветрогенераторные установки. Именно из-за существования такого побочного эффекта ВСУ (ветросиловая установка) подвергалось критике со стороны противников альтернативной энергетики, инфразвук отрицательно сказывается на окружающей живой среде. Но теперь ветрогенератор турбинного типа благодаря отсутствию инфразвуковых волн, могут устанавливать даже в городской черте.
  2. Отсутствие лопастей снимает сразу несколько задач, которые стояли перед конструкторами и изготовителями ветрогенератора. Первое, снимаются значительные затраты сил и средств на эксплуатационный контроль лопастных ветряков. Второе, лопасть ветряного колеса - это самый сложный элемент ветрогенератора в изготовлении. Львиную долю стоимости обычной ВЭУ составляют затраты именно на изготовление лопастей. К тому же известны случаи, когда при сильных порывах ветра, лопасть ломалась, разбрасывая осколки на сотни метров.
  3. Простота сборки и установки. Все сложные конструкции или узлы изготавливает и собирает завод-производитель, на месте происходит лишь последний этап сборки и установка на мачту. Плюс легкость конструкционных элементов, позволяет использовать при монтаже ветрогенераторасамую обычную грузоподъемную технику.
  4. Схема подключения. В отличие от лопастной ВСУ турбина подключается по стандартной схеме. На этот факт никак не влияют те технические условия, который выдвигает будущий владелец ВЭУ.
  5. Большой срок эксплуатации обусловлен материалами, из которых изготавливается ветрогенератор и его отдельные части. Учитывая профилактические работы, которые обязательны при эксплуатации ветротурбины, срок службы устройства может составлять до 50 лет.
  6. География эксплуатации турбинной ВСУ

    Самым реальным и оптимальным местом установки турбинного ветрогенератора будет берег озера или моря. Рядом с водоемами такой ветрогенератор будет работать практически круглый год, потому что благодаря своему сопельному устройству, он является очень чувствительным к легким бризам и другим малейшим проявлениям ветра скоростью от 2 м/сек.

    С таким же успехом ВСТ будут работать и в черте города, там, где обычный ветрогенератор работать, неспособен по ряду известных причин:

    1. Небезопасность лопастных ВЭУ.
    2. Инфразвук, который они издают.
    3. Минимальная скорость ветра для работы лопастного ветрогенератора 4 м/сек.

    Интересный факт, который доказывает преимущество ВТУ

    Одним из краеугольных камней, на которых базируется позиция противников альтернативной энергетики, заключается в том, что ветряные электростанции препятствуют работе локационного оборудования. Во время работы ветрогенератор создает помехи, для прохождения радиоволн. Учитывая размеры отдельных ветроэлектростанций, а они могут составлять от нескольких десятков до сотен квадратных километров, понятно, почему правительства многих стран начали блокировать проекты альтернативной энергетики на государственном уровне - это прямая угроза национальной безопасности.


    По этой причине французская компания, производящая комплектующие на ветрогенератор, взялась за непростую задачу с точки зрения исполнения - сделать невидимыми для радаров непосредственно ветросиловые установки, а не пространство вокруг ветрогенератора. Для этого будет использоваться опыт, полученный при изготовлении самолетов Стелс. Новые комплектующие планируют выпустить на рынок уже в 2015 году.

    Но где, же факт, который доказывает преимущество ВСТ перед лопастной ВЭУ? А факт заключается в том, что ветротурбины не создают помех, для работы локационного оборудования и без дорогостоящей технологии Стелс.

    Перспективы развития альтернативной ветроэнергетики

    Первые попытки начать использовать ветрогенератор в промышленных масштабах предпринимались еще в середине прошлого века, но оказались неудачными. Это было обусловлено тем, что нефтяные ресурсы были сравнительно дешевыми, а строительство ветроэнергетических станций было нерентабельно затратным. Но буквально через 25 лет ситуация в корне изменилась.

    Альтернативные источники энергии усилено начали развиваться в 70-х годах прошлого века, после того, как в мире резко выросли темпы машиностроения и страны столкнулись с дефицитом нефти, что привело к нефтяному кризису 1973 года. Тогда впервые сектор нетрадиционной энергетики в некоторых странах получил государственную поддержку и ветрогенератор стал использоваться в промышленных масштабах. В 80-х годах мировая ветроэнергетика начала выходить на самоокупаемость, и сегодня такие страны, как Дания, Германия и Австралия почти на 30% обеспечивают себя за счет альтернативных источников энергии, в числе которых и ветроэлектростанции.


    К сожалению, а возможно, и к счастью, прошлогодняя тенденция нефтяного рынка с нестабильной ценой на нефть, заставляют всерьез задуматься о том, что времена, когда дешевая нефть - это было хорошо остались в прошлом. Сегодня для многих стран, чем дешевле нефть, тем выгоднее развивать нетрадиционную энергетику в первую очередь это касается стран СНГ. Поэтому предпосылки для того, что ветроэнергетика будет развиваться - есть. Как это будет - посмотрим.

Правильно спроектированная вентиляционная система обеспечивает чистый и свежий воздух внутри помещения. Главным условием её эффективной работы является наличие тяги. К сожалению, мусор и пыль, попадающие в каналы, способны нарушить нормальную работу оборудования. Чтобы этого не произошло на вентиляционную трубу необходимо установить дефлектор.

Если дефлектора на вентиляционной трубе нет, то её диаметр будет постепенно уменьшаться. В наибольшей степени этому способствует жир, который скапливается на стенках воздуховода. Именно на него налипает пыль и мусор.

Вентиляционный дефлектор устанавливается на оголовок трубы. На первый взгляд, это защищает каналы от мусора, который может попадать извне. Но не всё так просто. Устройство выполняет целый ряд функций, каждая из которых важна.

Особенности

Установка дефлектора на вентиляционную трубу в значительной мере позволяет увеличить тягу. Устройство отклоняет воздушные потоки. В итоге на выходе из вентиляционной шахты образуется зона пониженного давления. Благодаря этому воздух, внутри трубы поднимается вверх. Таким образом происходит компенсация давления.

Существует множество конструкций дефлекторов, но все они работают по описанному выше принципу. Интересно, что в большинстве современных устройств имеется сужение канала. Это позволяет добиться роста скорости, с которой воздушные потоки проходят над оголовком трубы. В результате тяга усиливается. Данный эффект носит название «принцип аэрографа».

Если правильно использовать дефлектор на вентиляционной трубе, то можно добиться значительного прироста в эффективности работы всей системы. При правильном выборе устройства и его оптимальной установке прирост мощности может достигать 20 процентов.

Внимание! Самую высокую эффективность вентиляционный дефлектор показывает при установке на вентиляционных каналах с изгибами и большими горизонтальными участками.

Но основным предназначением дефлектора всё-таки является защита воздуховода от попадания внутрь мусора, насекомых, мелких птиц и атмосферных осадков. Так как устройство устанавливается снаружи, то материалом корпуса является нержавеющая сталь или керамика. В некоторых случаях можно увидеть и обычный пластик.

Плюсы и минусы

Перед тем собрать агрегат своими руками необходимо узнать не только его позитивные стороны, но и негативные. Для начала сосредоточимся на позитиве. Зонтичная конструкция эффективно защищает трубу от осадков и грязи, также можно наблюдать увеличение тяги.

Главным недостатком дефлектора на вентиляционную трубу является то, что когда ветер дует снизу, то поток ударяется в верхнюю часть конструкции и не даёт воздуху нормально выходить наружу. Поэтому иногда могут наблюдаться проблемы с работой системы. К счастью, это происходит довольно редко.

К тому же были придуманы действенные контрмеры. Проще говоря, конструкции стали обустраивать двумя конусами, которые соединяются основаниями. Поэтому если вы хотите получить по-настоящему надёжный агрегат, это лучше всего учитывать при создании чертежа.

Внимание! Чем сильнее нисходящий поток ветра, тем выше давление внутри вентиляционного дефлектора, который установлен на трубе.

Виды

Существует множество разновидностей дефлекторов для вентиляционных труб:

  1. Весьма востребованным является дефлектор Цаги. Устройство обрело высокую популярность благодаря простоте конструкции и высокой эффективности.
  2. Дефлектор Григоровича пользуется большой популярностью.
  3. Н-образный аппарат является наиболее эффективным при установке на дымовых трубах.

Также довольно часто можно встретить открытые конструкции. Так как всевозможных конструкций на рынке довольно много, их классифицируют по следующим параметрам:

  • форма навершия,
  • роторный или турбинный принцип работы,
  • тип флюгера.

Особую роль играет материал, из которого сделан дефлектор. К примеру, пластиковые изделия обладают сравнительно невысокой ценой, но при этом их срок эксплуатации не очень велик. Также можно отметить утончённый внешний вид.

Именно из-за эстетичности пластиковые дефлекторы можно увидеть на большинстве труб в частных домах. К сожалению, пластик не выносит высоких температур, поэтому его нельзя устанавливать на дымоходах.

Вращающийся вентиляционный дефлектор усиливает тягу и эффективно защищает каналы от попадания внутрь разнообразного мусора. Главной особенностью устройства является шарообразная форма.

Ротационный вентиляционный дефлектор для трубы также может называться турбинным. Устройство способно за счёт энергии ветра обеспечивать движение турбины. Внутри её воздух закручивается по принципу торнадо. Это, в свою очередь, увеличивает тягу в воздуховоде. Как результат можно наблюдать хорошую тягу даже летом.

Дефлектор Григоровича

Существует множество разновидностей вентиляционных дефлекторов для труб. Если же брать во внимание конструкцию, в которой сочетается простота и эффективность, то это, безусловно, агрегат Григоровича.

Этот вентиляционный дефлектор для трубы имеет усечённый конус. Он ещё называется диффузором. Сама вентиляционная труба должна в него немного входить. Сверху монтируется защитный зонт. Под ним устанавливается конструкция, обеспечивающая пониженное давление даже при боковом ветре. Она имеет форму конуса. Само собой, подобная конструкционная особенность увеличивает силу тяги.

Делаем дефлектор своими руками

Подготовительные работы

Чтобы сделать вентиляционный дефлектор своими руками и установить его на трубу для начала нужно выполнить определённые подготовительные работы. Устройство состоит из таких основных элементов:

  • входного патрубка,
  • диффузора,
  • колпака.

В качестве материала лучше всего выбрать нержавеющую сталь. Её высокие антикоррозийные свойства обеспечат долгий срок службы дефлектора на вентиляционной трубе.

Перед тем как начать сборку своими руками необходимо озаботиться наличием нужного инструментария, в него входит:

  • болгарка,
  • дрель,
  • хомуты,
  • молоток,
  • рулетка,
  • ножницы для металла,
  • болты и гайки,
  • заклёпки.

Также вам нужно подумать о поиске подходящих для агрегата листов металла. Особое внимание нужно уделить средствам защиты. Не стоит начинать работу без перчаток и очков.

В подготовительный процесс также входит создание чертежа для вентиляционного дефлектора своими руками. Стоит признать, что это довольно непростая задача. Конечно, саму конструкцию сверхсложной не назовёшь, тем не менее для того, чтобы получить пригодный к длительной эксплуатации агрегат нужно всё тщательно рассчитать.

Оптимальным будет взять уже готовый чертёж, к примеру, один из этой статьи. Но вы должны учитывать, что размеры трубы у вас могут быть совсем другими. Поэтому в процессе осуществления проекта может понадобиться внести дополнительные коррективы. Лучшим вариантом будет обратиться в конструкторское бюро, где вам сделают готовый проект, который вы сможете воплотить в жизнь своими руками.

Сборка

После того как вы подготовите весь нужный инструмент и позаботитесь об индивидуальной защите, можно будет приступить к самому процессу. Для начала необходимо перевести контуры с чертежа на металл. При этом особое внимание уделяется следующим элементам:

  • колпаку,
  • диффузору,
  • внешнему цилиндру,
  • стойкам.

От того, насколько тщательно вы всё прорисуете, зависит конечный результат в виде готового к работе агрегата. Как только метки нанесены, можно приступать к вырезанию нужных форм, конечно же, для этого вам понадобятся ножницы по металлу.

Чтобы соединить вырезанные элементы между собой используйте заклёпочный пистолет. При этом своеобразными мостами между двух частей основной конструкции будут выступать стойки.

Внимание! Стойки должны быть вырезаны из того же металла, что и две основные части агрегата.

После того как агрегат будет собран, его можно устанавливать на изголовье трубы. При этом сама конструкция крепится при помощи хомутов. На этом процесс изготовления и установки можно считать завершённым.

Итоги

Вентиляционный дефлектор — это важный элемент в системе вентиляции. Он позволяет увеличить производительность системы на 20 процентов и при этом защищает внутренние каналы от мусора, пыли и осадков. Чаще всего агрегаты такого класса делаются из листов нержавейки, но возможны и другие варианты.


Для привода ветрового генератора изготовлена турбина роторного типа с вертикальной осью вращения. Этот тип ротора очень прочен и долговечен, имеет относительно небольшую скорость вращения и легко может быть изготовлен в домашних условиях, без канители с аэродинамическим профилем крыла и другими проблемами, связанными с изготовлением рабочего винта для ветрогенератора с горизонтальной осью вращения. Более того, такая турбина работает практически бесшумно и вне зависимости от того, куда дует ветер. Работа практически не зависит от турбулентности и частой смены силы и направления ветра. Для турбины характерны высокие пусковые крутящие моменты, работа при относительно низких скоростях. Эффективность этой турбины небольшая, но для питания устройств небольшой мощности этого достаточно, все окупается простотой и надежностью конструкции.

Электрогенератор

В качестве генератора используется доработанный компактный автомобильный стартер на постоянных магнитах. Выходные данные генератора: переменный ток мощностью 1,0…6,5 вт (в зависимости от скорости ветра).
Вариант переделки стартера в генератор описан в статье:

Изготовление турбины ветрогенератора

Эта ветровая турбина практически ничего не стоит и проста в изготовлении.
Конструкция турбины состоит из двух или более полуцилиндров установленных на вертикальном валу. Ротор вращается за счет различного сопротивления ветру каждой из лопастей, повернутых к ветру с различной кривизной. Эффективность ротора несколько повышается за счет центрального зазора между лопастями, так как некоторое количество воздуха дополнительно воздействует на вторую лопасть при выходе из первой.

Генератор закрепляется на стойке за выходной вал, через который выходит провод с полученным током. Такая конструкция позволяет исключить скользящий контакт для съема тока. Ротор турбины устанавливается на корпус генератора и фиксируется на свободные концы монтажных шпилек.

Из алюминиевого листа толщиной 1,5 мм вырезается диск диаметром 280…330 мм или квадратная пластина, вписанная в этот диаметр.

Относительно центра диска размечаются и сверлятся пять отверстий (одно в центре и 4 по углам пластины) для установки лопастей и два отверстия (симметричные центральному) для закрепления турбины на генератор.

В отверстия, расположенные по углам пластины, устанавливаются небольшие уголки из алюминия, толщиной 1,0…1,5 мм, для закрепления лопастей.



Лопасти турбины изготовим из консервной банки диаметром 160 мм и высотой 160 мм. Банка разрезается вдоль оси пополам, в результате чего получаются две одинаковые лопасти. Края банки после разреза, на ширине 3…5 мм, загнуты на 180 градусов и обжаты для усиления края и исключения острых режущих кромок.



Обе лопасти турбины, со стороны открытой части банки, соединены между собой П-образной перемычкой с отверстием посередине. Перемычка образует зазор шириной 32 мм, между центральной частью лопастей, для повышения эффективности работы ротора.


С противоположной стороны банки (у дна), лопасти соединены между собой перемычкой минимальной длины. При этом зазор шириной 32 мм сохраняется на всей длине лопасти.


Собранный блок лопастей устанавливается и крепится на диск в трех точках - за центральное отверстие перемычки и установленные ранее алюминиевые уголки. Лопасти турбины закрепляются на пластине строго одна против другой.

Для соединения всех деталей можно использовать заклепки, саморезы, винтовое соединение М3 или М4, уголки или применить другие способы.

В отверстия, с другой стороны диска, устанавливается генератор и фиксируется гайками на свободные концы монтажных шпилек.


Для надежного самозапуска ветрогенератора необходимо добавить в турбину второй аналогичный ярус лопастей. При этом лопасти второго яруса смещаются по оси относительно лопастей первого яруса на угол 90 градусов. В итоге получится четырехлопастной ротор. Это гарантирует, что всегда есть, по крайней мере, одна лопасть, которая в состоянии поймать ветер и дать турбине толчок для вращения.

Для уменьшения размеров ветрогенератора, второй ярус лопастей турбины можно изготовить и закрепить вокруг генератора. Изготовим две лопасти шириной 100 мм (высота генератора), длиной 240 мм (аналогично длине лопасти первого яруса) из алюминиевого листа толщиной 1,0 мм. Лопасти изогнем по радиусу 80 мм, аналогично лопастей первого яруса.


Каждая лопасть второго (нижнего) яруса закрепляется с помощью двух уголков.
Один установлен в свободное отверстие на периферии диска, аналогично креплению лопастей верхнего яруса, но со сдвигом на угол 90 градусов. Второй уголок закрепляется на шпильку устанавливаемого генератора. На фото, для наглядности крепления лопастей нижнего яруса, генератор снят.

Вопросы энергонезависимости беспокоят умы не только руководителей государств, предприятий, но и отдельно взятых граждан, владельцев частных домов. С увеличением монополии и тарифов производителями электроэнергии, народ ищет эффективные альтернативные источники питания. Одним из таких источников считается ветровой генератор.

Основные элементы в системе ветрового генератора

Существует много моделей, вариантов от разных производителей, но как показывает практический опыт, не всегда они доступны по цене и качеству для широкого круга потребителей. При наличии информации, определенных знаний электротехники и практических навыках, ветрогенератор доступно сделать своими руками.

Принцип работы и основные элементы

Работа самодельного ветрогенератора ничем не отличается от промышленных моделей, принципы действия заложены те же самые. Энергия ветра преобразуется в механическую энергию вращением ротора генератора, который вырабатывает электричество.

Основные элементы конструкции (рис. выше):

  • пропеллер с лопастями;
  • вал вращения, по которому крутящий момент передается на ротор генератора;
  • генератор;
  • конструкция крепления генератора на месте установки;
  • если необходимо, для увеличения оборотов вращения ротора может устанавливаться редуктор или ременная передача между валом с пропеллером и валом генератора;
  • для преобразования переменного тока генератора в постоянный используется преобразователь, выпрямительный диодный мост, ток с которого поступает для подзарядки аккумуляторной батареи;
  • аккумуляторная батарея, от которой электроэнергия поступает через инвертор к нагрузке;
  • инвертор преобразует постоянный ток аккумулятора с напряжением 12 В или 24 В в переменный с напряжением 220 В.

Конструкции пропеллеров, генераторов, редукторов и других элементов могут отличаться, иметь различные характеристики, дополнительные приборы, но в основе системы всегда присутствуют перечисленные составляющие.

Выбор и изготовление своими руками

По конструктивному исполнению существует два типа оси, вращающей ротор генератора:

  • генераторы с горизонтальной осью вращения;

Генератор с горизонтальной осью вращения

  • генераторы с вертикальной осью вращения.

Роторный ветрогенератор с вертикальной осью вращения

Горизонтальные оси вращения

Каждая конструкция имеет свои достоинства и недостатки. Наиболее распространенный вариант – с горизонтальной осью. Эти модели имеют большой КПД преобразования энергии ветра во вращательные движения оси, но есть определенные трудности в расчетах и изготовлении своими руками лопастей. Обычная плоская форма лопасти, которая применялась на старинных ветряных мельницах, малоэффективна.

Для использования максимальной энергии ветра при вращении оси, лопасти должны иметь крыловидную форму. На самолетах форма крыла за счет силы встречного ветра обеспечивает подъемные потоки. В рассматриваемом случае силы этих потоков будут направлены на вращение вала генератора. Пропеллеры могут быть с двумя, тремя, и большим количеством лопастей, чаще всего встречаются конструкции с тремя лопастями. Этого вполне достаточно, чтобы обеспечить необходимую скорость вращения.

Ветрогенераторы с горизонтальной осью вращения должны постоянно быть повернуты плоскостью пропеллера на фронт встречного потока ветра. Для этого требуется применять хвостовое оперение флюгерного типа, которое под действием ветра, как парус, разворачивает всю конструкцию пропеллером к встречному ветру.

Вертикальные оси вращения

Основным недостатком этого варианта является низкий КПД, однако это компенсируется более простой конструкцией, которая не требует изготовления дополнительных элементов для поворота лопастей к ветру. Вертикальное расположение оси и лопастей позволяет использовать энергию ветра для вращения с любого направления, эту конструкцию проще сделать своими руками. Вращение вала осуществляется более стабильно, без резких скачков скорости.

Среднегодовые скорости ветров на территории России неодинаковы. Наиболее благоприятные условия для работы ветрогенераторов – 6-10 м/с. Таких районов немного, в основном преобладают ветра 4-6 м/с. Для увеличения скорости вращения приходится применять редукторы и учитывать высоту, розу ветров на местности установки генератора.

Пример изготовления ветрогенератора

Рассматривается вариант с вертикальной осью вращения.

Ветровая турбина своими руками

Самый простой вариант для производства лопастей – использовать металлическую бочку на 50-200 л. В зависимости от количества необходимых лопастей, бочка распиливается болгаркой сверху вниз на 4 или 3 равные части.

Вертикальные лопасти из металлической бочки

Можно просто использовать листы оцинкованного кровельного железа, которые легко вырезать нужной формы своими руками, используя ножницы по металлу.

Вертикальные лопасти из листового железа

В дальнейшем лопасти крепятся на верхней части оси вращения. Основой для их крепления могут быть деревянные диски из шестислойной фанеры.

Надежнее использовать металлическую раму из прямоугольного профиля, к которой болтами прикручиваются лопасти.

Пример размещения вертикальных лопастей

Пример крепления лопастей к платформе

Рама или диски жестко крепятся на ось вращения, сама ось вставляется в муфты с подшипниками, которые надежно установлены в каркасе вышки или крыши здания, на котором размещается генератор.

Установка оси с лопастями на вышке

Наглядное изображение установки вертикальной оси вращения на крыше здания

  1. Турбина с вертикальными лопастями.
  2. Платформа стабилизации оси с двухрядным шариковым подшипником.
  3. Растяжки стального троса Ø 5мм.
  4. Вертикальная ось, стальная труба Ø 40-50мм, толщина стенок не менее 2 мм.
  5. Рычаг регулятора скорости вращения.
  6. Лопасти аэродинамического регулятора сделаны из фанеры или пластика толщиной 3-4 мм.
  7. Тяги, которыми регулируется скорость вращения, количество оборотов.
  8. Груз, вес которого устанавливает скорость вращения.
  9. Шкив вертикальной оси для ременной передачи, широко используется велосипедный обод от колеса, без камеры и покрышки.
  • Опорный подшипник.
  • Шкив на оси ротора генератора.

На нижний конец оси крепится шкив для ременной передачи или шестерни для редуктора, это необходимо для увеличения скорости вращения ротора. Практика показывает, что при скорости ветра 5 м/с вращение вала с горизонтальными лопастями от бочки будет не более 100 об/м. При скорости ветра 8-10 м/с вращение достигает до 200 м/с. Этого очень мало для того, чтобы генератор выдавал необходимую мощность для зарядки аккумулятора.

Редуктор соотношением 1:10 позволяет добиться необходимой скорости вращения.

Установка шкивов ременной передачи

Низкооборотный генератор

Для преобразования механической вращательной энергии в электричество проще всего использовать автомобильные генераторы. Но обычные генераторы от легковых автомобилей для ветряков не рекомендуются по причине наличия щеток в их конструкции. Графитовые щетки снимают ток, наводящийся на роторе, в процессе эксплуатации они стираются и требуют замены. Кроме того, такие генераторы высокооборотистые, для выработки напряжения 14 В с током до 50А требуется 2000 и более оборотов.

Более эффективные генераторы для ветряков от тракторов и автобусов Г.964.3701 с магнитным возбуждением обмоток. Они не имеют щеток, работают на более низких оборотах. Генератор Г288А.3701 имеет три фазы, используется для электроснабжения транспортных средств в совокупности с аккумулятором. Имеет хорошие характеристики для использования в системах ветрогенераторов:

  • вырабатывает напряжение 28 В;
  • встроенный выпрямитель выдает постоянный ток до 47 А;
  • мощность на выходе до 1.3 кВт;
  • на холостом ходу вращение 1200 об/м;
  • при токовой нагрузке в 30А требуется 2100 об/м.

Генератор имеет подходящие габариты и массу:

  • общий вес 10 кг;
  • диаметр 174 мм;
  • длина 230 мм.

Генератор с МАЗа – 24В

Генераторы такого типа используются на транспорте КАМАЗ, Урал, КРАЗ, МАЗ с двигателями ярославского завода ЯМЗ 236, 238, 841, 842 и ЗМЗ 73. В целях экономии финансов, можно купить бывший в употреблении генератор на пунктах разборки. Для выработки большей мощности электроэнергии при низких оборотах можно сделать генератор своими руками на ниодимовых магнитах, но это отдельная тема и требует более подробного описания.

Последовательность сборки

  1. В первую очередь монтируется вышка или конструкция крепления генератора на крыше здания. Крепится вертикальная ось во втулки с подшипниками, устанавливаются лопасти.
  1. После установки оси с лопастями на нижней части фиксируется шкив для ременной передачи.
  2. На уровне шкива оси, к специально подготовленной платформе, крепится генератор с шкивом для ремня на вале ротора. Шкивы генератора и оси с лопастями должны устанавливаться на одном уровне.

Диаметр шкива на оси должен быть примерно в 10 раз больше диаметра шкива на вале генератора. Исходя из условий, что расчетная скорость ветра примерно 10 м/с, даст скорость вращения оси до 200 об/м.

Используется формула:

Wr = Wos x Dosd, где

  • Wr – скорость вращения шкива генератора;
  • Dos – диаметр шкива на вертикальной оси;
  • d – диаметр шкива на вале ротора генератора;
  • Wos – скорость вращения шкива вертикальной оси.

Wr = 200 обм х 500мм/50 мм = 2000 об/м – достаточная скорость вращения, чтобы генератор выбранного типа выдал необходимую мощность.

  1. Натягивается ремень, для этого в платформе крепления генератора должны быть прорези, как на креплении автомобиля.
  2. Выходные провода генератора подключаются к клеммам аккумулятора.

Данные генераторы имеют встроенные выпрямители, на выходе постоянный ток, поэтому плюсовой красный провод крепится к клемме «+», а минусовой провод – к клемме «минус».

  1. Вход инвертора 24В/220В подключается к аккумулятору, также с соблюдением полярностей.
  2. Выход инвертора подключается к цепи с нагрузкой.

Видео. Ветрогенератор своими руками.

Имея необходимые материалы, практические навыки слесарных работ, используя готовые автомобильные генераторы с магнитным возбуждением обмоток, ветрогенератор несложно установить своими руками. Для изготовления генератора большей мощности на ниодимовых магнитах потребуются более глубокие знания в электротехнике и навыки сборки электрооборудования. Это один из самых простых способов собрать ветровой генератор своими руками.

Нами была разработана конструкция ветрогенератора с вертикальной осью вращения. Ниже, представлено подробное руководство по его изготовлению, внимательно прочтя которое, вы сможете сделать вертикальный ветрогенератор сами.

Ветрогенератор получился вполне надежный, с низкой стоимостью обслуживания, недорогой и простой в изготовлении. Представленный ниже список деталей соблюдать не обязательно, вы можете внести какие-то свои коррективы, что-то улучшить, что-то использовать свое, т.к. не везде можно найти именно то, что в списке. Мы постарались использовать недорогие и качественные детали.

Используемые материалы и оборудование:

Наименование Кол-во Примечание
Список используемых деталей и материалов для ротора:
Предварительно вырезанный лист металла 1 Вырезан из стали толщиной 1/4" при помощи гидроабразивной, лазерной и др. резке
Ступица от авто (Хаб) 1 Должна содержать 4 отверстия, диаметр около 4 дюймов
2" x 1" x 1/2" неодимовый магнит 26 Очень хрупкие, лучше заказать дополнительно
1/2"-13tpi x 3" шпилька 1 TPI - кол-во витков резьбы на дюйм
1/2" гайка 16
1/2" шайба 16
1/2" гровер 16
1/2".-13tpi колпачковая гайка 16
1" шайба 4 Для того, чтобы выдержать зазор между роторами
Список используемых деталей и материалов для турбины:
3" x 60" Оцинкованная труба 6
ABS пластик 3/8" (1.2x1.2м) 1
Магниты для балансировки Если нужны Если лопасти не сбалансированы, то магниты прикрепляются для балансировки
1/4" винт 48
1/4" шайба 48
1/4" гровер 48
1/4" гайка 48
2" x 5/8" уголки 24
1" уголки 12 (опционально) В случае, если лопасти не держат форму, то можно добавить доп. уголки
винты, гайки, шайбы и гроверы для 1" уголка 12 (опционально)
Список используемых деталей и материалов для статора:
Эпоксидка с затвердителем 2 л
1/4" винт нерж. 3
1/4" шайба нерж. 3
1/4" гайка нерж. 3
1/4" кольцевой наконечник 3 Для эл. соединения
1/2"-13tpi x 3" шпилька нерж. 1 Нерж. сталь не является ферромагнетиком, поэтому не будет "тормозить" ротор
1/2" гайка 6
Стеклоткань Если нужна
0.51мм эмал. провод 24AWG
Список используемых деталей и материалов для монтажа:
1/4" x 3/4" болт 6
1-1/4" фланец трубы 1
1-1/4" оцинк. труба L-18" 1
Инструменты и оборудование:
1/2"-13tpi x 36" шпилька 2 Используется для поддомкрачивания
1/2" болт 8
Анемометр Если нужен
1" лист алюминия 1 Для изготовления проставок, если понадобятся
Зеленая краска 1 Для покраски держателей пластика. Цвет не принципиален
Голубая краска бал. 1 Для покраски ротора и др. частей. Цвет не принципиален
Мультиметр 1
Паяльник и припой 1
Дрель 1
Ножовка 1
Керн 1
Маска 1
Защитные очки 1
Перчатки 1

Ветрогенераторы с вертикальной осью вращения не настолько эффективны, как их горизонтальные собратья, однако вертикальные ветрогенераторы менее требовательны к месту их установки.

Изготовление турбины

1. Соединяющий элемент - предназначен для соединения ротора к лопастям ветрогенератора.
2. Схема расположения лопастей - два встречных равносторонних треугольника. По данному чертежу потом легче будет расположить уголки крепления лопастей.

Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний.

Последовательность действий изготовления турбины:

  1. Изготовление нижней и верхней опор (оснований) лопастей. Разметьте и при помощи лобзика вырежьте из ABS пластика окружность. Затем обведите ее и вырежьте вторую опору. Должны получиться две абсолютно одинаковые окружности.
  2. В центре одной опоры вырежьте отверстие диаметром 30 см. Это будет верхняя опора лопастей.
  3. Возьмите хаб (ступица от авто) и разметьте и просверлите четыре отверстия на нижней опоре для крепления хаба.
  4. Сделайте шаблон расположения лопастей (рис. выше) и разметьте на нижней опоре места крепления уголков, которые будут соединять опору и лопасти.
  5. Сложите лопасти в стопку, прочно свяжите их и обрежьте до требуемой длины. В данной конструкции лопасти длиной 116 см. Чем длинее лопасти, тем больше энергии ветра они получают, но обратной стороной является нестабильность в сильный ветер.
  6. Разметьте лопасти для крепления уголков. Накерните, а затем просверлите отверстия в них.
  7. Используя шаблон расположения лопастей, который представлен на рисунке выше, прикрепите лопасти к опоре при помощи уголков.

Изготовление ротора

Последовательность действий по изготовлению ротора:

  1. Положите два основания ротора друг на друга, совместите отверстия и напильником или маркером сделайте небольшую метку по бокам. В дальнейшем, это поможет правильно сориентировать их относительно друг-друга.
  2. Сделайте два бумажных шаблона расположения магнитов и приклейте их на основания.
  3. Промаркируйте полярность всех магнитов при помощи маркера. В качестве "тестера полярности" можно использовать небольшой магнит, обмотанный тряпкой или изолентой. Проводя его над большим магнитом, будет хорошо видно, отталкивается он или притягивается.
  4. Приготовьте эпоксидную смолу (добавив в нее отвердитель). И равномерно нанесите ее снизу магнита.
  5. Очень аккуратно поднесите магнит к краю основания ротора и переместите его к своей позиции. Если магнит устанавливать сверху ротора, то большая мощность магнита может его резко примагнитить и он может поломаться. И никогда не суйте свои пальцы и другие части тела между двумя магнитами или магнитом и железом. Неодимовые магниты очень мощные!
  6. Продолжайте приклеивать магниты к ротору (не забудьте смазывать эпоксидкой), чередую их полюса. Если магниты сьезжают под действием магнитной силы, то воспользуйтесь куском дерева, располагая его между ними для страховки.
  7. После того, как один ротор закончили, переходите к второму. Используя ранее поставленную метку, расположите магниты точно напротив первого ротора, но в другой полярности.
  8. Положите роторы подальше друг от друга (чтобы они не примагнитились, иначе потом не отдерете).

Изготовление статора очень трудоемкий процесс. Можно конечно купить готовый статор (попробуй еще найти их у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками

Статор ветрогенератора - электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:
320 витков, 0.51 мм (24AWG) = 100В @ 120 об/мин.
160 витков, 0.0508 мм (16AWG) = 48В @ 140 об/мин.
60 витков, 0.0571 мм (15AWG) = 24В @ 120 об/мин.

Вручную наматывать катушки - это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки я бы вам посоветовал сделать простое приспособление - намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов.

Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой.

Приспособа сделана из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой.

Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек.

Вы можете придумать свою конструкцию намоточного станка, а может у вас уже имеется готовый.
После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром.

Не подключайте домашних потребителей напрямую от ветрогенератора! Также соблюдайте меры безопасности при обращении с электричеством!

Процесс соединения катушек:

  1. Зачистите шкуркой концы выводов каждой катушки.
  2. Соедините катушки, как показано на рисунке выше. Должно получиться 3 группы, по 3 катушки в каждой группе. При такой схеме соединений получится трехфазный переменный ток. Концы катушек припаяйте, либо воспользуйтесь зажимами.
  3. Выберите одну из следующих конфигураций:
    А. Конфигурация "звезда ". Для того, чтобы получить большое напряжение на выходе, соедините выводы X,Y и Z между собой.
    B. Конфигурация "треугольник". Для того, чтобы получить большой ток, соедините X с B, Y с C, Z с A.
    C. Для того, чтобы в будущем сделать возможность изменять конфигурацию, нарастите все шесть проводников и выведите их наружу.
  4. На большом листе бумаге нарисуйте схему расположения и подключения катушек. Все катушки должны быть равномерно распределены и соответствовать расположению магнитов ротора.
  5. Прикрепите катушки при помощи скотча к бумаге. Приготовьте эпоксидную смолу с отвердителем для заливки статора.
  6. Для нанесения эпоксидки на стеклоткань используйте малярную кисть. Если необходимо, то добавьте небольшие кусочки стеклоткани. Центр катушек не заполняйте, чтобы обеспечить их достаточное охлаждение при работе. Постарайтесь избегать образования пузырьков. Целью данной операции является закрепление катушек на своих местах и придание плоской формы статору, который будет располагаться между двумя роторами. Статор не будет нагруженным узлом и не будет вращаться.

Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках:

Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше - места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность.

Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром.

Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора.

Кронштейн статора

Труба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось.

На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами.

На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами. Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия.

Генератор. Окончательная сборка

Небольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре.

На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны).
На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место.

Процесс сборки:
1. В плите верхнего ротора просверлите 4 отверстия и нарежьте в них резьбу для шпильки. Это необходимо для плавного опускания ротора на свое место. Уприте 4 шпильки в алюминиевые пластины приклеенные ранее и установите на шпильки верхний ротор.
Роторы будут притягиваться друг к другу с очень большой силой, поэтому и нужно такое приспособление. Сразу выровняйте роторы относительно друг-друга по поставленным ранее метках на торцах.
2-4. Поочередно вращая ключом шпильки, равномерно опускайте ротор.
5. После того, как ротор уперся в втулку (обеспечивающая зазор), выкрутите шпильки и уберите алюминиевые пластины.
6. Установите хаб (ступицу) и прикрутите его.

Генератор готов!

После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так (см. рис. выше)

Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники.

Колпачковые гайки и шайбы служат для крепления соедин. платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам.

Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности.

Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.
Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен преобразователь для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи.

На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный.

Место установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора - достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы "любят" когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места.
Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).

Немного о механике ветрогенератора

Как известно, ветер возникает из-за разности температур поверхности земли. Когда ветер вращает турбины ветрогенератора, он создает три силы: подьемную, торможения и импульсную. Подьемная сила обычно возникает над выпуклой поверхностью и является следствием разности давлений. Сила торможения ветра возникает за лопастями ветрогенератора, она является нежелательной и тормозит ветряк. Импульсная сила возникает из-за изогнутой формы лопастей. Когда молекулы воздуха толкают лопасти сзади, то им некуда потом деваться и они собираются позади них. В результате, они толкают лопасти в направлении ветра. Чем больше подьемная и импульсная силы и меньше сила торможения, тем быстрее лопасти будет вращаться. Соответственно вращается ротор, который создает магнитное поле на статоре. В результате чего вырабатывается электрическая энергия.

Скачать схему расположения магнитов.



Понравилась статья? Поделитесь ей