Контакты

Расчёт и изготовление металлической фермы для навеса. Пример расчета стропильной фермы Расчет стержней металлической фермы

Расчет ферм – это программа, используемая для расчета плоских ферм.

Использование

Благодаря данному программномую обеспечению, Вы сможете определить для конструкций выбранного типа (поддерживаются даже деревянные) фермы нагрузку, а также оценить уровень их прочности и устойчивости. Это поможет выявить все недостатки и ошибки, которые порою "проскакивают" незамеченными на этапе проектировки.

Функционал

Данное решение является усовершенствованной версией программы , о которой мы рассказывали в другом обзоре. Именно из Кристалла и позаимствован режим расчета ферм. Однако, конечно, "ферма" имеет намного более развитый, усовершенствованный, функционал, чем ее предшественник. Например, разработчик задействовал в своем продукте те прототипы, которые являются наиболее часто встречающимися в этой сфере деятельности. Помимо этого, в каталог поперечных стержней сечений добавлено гораздо больше вариантов, чем было в Кристалле. Также окно выбора стали стало более удобным для пользователя.

Работа с программой Расчет ферм происходит в автоматическом режиме. Пользователю не придется самостоятельно генерировать модель фермы, так как расчет будет производиться соответственно готовому шаблону, выбранному из каталога. Построение расчетной схемы усилий и геометрической схемы происходит в AutoCad, что гораздо более удобно для специалиста, нежели обыкновенный отчет в текстовом редакторе. Помимо создания фермы в этой программе, Вы также можете импортировать сюда проекты, созданные в другом программном обеспечении (формата DFX).

Ключевые особенности

  • расчет плоских ферм любых конструкций из выбранного материала;
  • использование готовых прототипов, что исключает необходимость "рисовать" ферму самому;
  • полный расчет формул с детальными описания ми и с указанием ссылок на СНиПы;
  • поддержка компьютеров с любыми версиями Windows;
  • простой и понятный интерфейс (полностью на русском языке);
  • совместимость со всеми установленными стандартами;
  • распространение на бесплатной основе.

Имеется открытая площадка размерами 10х5 м возле дома и эту площадку хочется сделать закрытой, чтобы летом можно было пить чай на улице, не взирая на погодные условия, точнее взирая, но из-под надежного навеса, а еще чтобы можно было поставить машину под навес, сэкономив на гараже, да и вообще чтобы была защита от солнечного зноя в летний день. Вот только 10 метров - пролет большой и балку для такого пролета подобрать трудно, да и слишком массивной будет эта самая балка - скучно и вообще напоминает заводской цех. В таких случаях оптимальный вариант - сделать вместо балок фермы, а потом уже по фермам кидать обрешетку и делать кровлю. Само собой форма фермы может быть любой, но далее будет рассматриваться расчет треугольной фермы, как наиболее простой вариант. Проблемы расчета колонн для подобного навеса рассматриваются отдельно, расчет двух или ригелей, на которые будут опирать фермы, здесь также не приводится.

Пока предполагается, что фермы будут располагаться с шагом 1 метр, а нагрузка на ферму от обрешетки будет передаваться только в узлах фермы. Кровельным материалом будет служить профнастил. Высота фермы может быть теоретически любой, вот только если это навес, примыкающий к основному зданию, то главным ограничителем будет форма кровли, если здание одноэтажное, или окна второго этажа, если этажей больше, но в любом случае сделать высоту фермы больше 1 м вряд ли получится, а с учетом того, что надо делать еще и ригеля между колоннами, то и 0.8 м не всегда выйдет (тем не менее примем эту цифру для расчетов). На основании этих предположений уже можно конструировать ферму:

Рисунок 272.1. Общая предварительная схема навеса по фермам.

На рисунке 272.1 голубым цветом показаны балки обрешетки, синим цветом - ферма, которую следует рассчитать, фиолетовым цветом - балки или фермы, на которые опираются колонны, изменение цвета от светло-голубого к темно-фиолетовому в данном случае показывает увеличение расчетной нагрузки, а значит для для более темных конструкций потребуются более мощные профили. Фермы на рисунке 272.1 показаны темно-зеленым цветом из-за совершенно иного характера нагрузки. Таким образом расчет всех элементов конструкции по отдельности, как то:

Балок обрешетки (балки обрешетки можно рассматривать как многопролетные балки , если длина балок будет около 5 м, если балки будут делаться длиной около 1 м, т.е. между фермами, тогда это обычные однопролетные балки на шарнирных опорах)

Ферм кровли (достаточно определить нормальные напряжения в поперечных сечениях стержней, о чем речь ниже)

Балок или ферм под фермами кровли (рассчитываются как однопролетные балки или фермы)

никаких особых проблем не представляет. Однако целью данной статьи является показать пример расчета именно треугольной фермы, этим мы и займемся. На рисунке 272.1 можно рассмотреть 6 треугольных ферм, при этом на крайние (переднюю и заднюю) фермы нагрузка будет в 2 раза меньше, чем на остальные фермы. Это означает, что эти две фермы если есть стойкое желание сэкономить на материалах, следует рассчитывать отдельно. Однако из эстетических и технологических соображений лучше все фермы сделать одинаковыми, а это значит, что достаточно рассчитать все лишь одну ферму (показана на рис.272.1 синим цветом). В данном случае ферма будет консольной, т.е. опоры фермы будут располагаться не на концах фермы, а в узлах, показанных на рисунке 272.2. Такая расчетная схема позволяет более равномерно распределить нагрузки, а значит, и использовать для изготовления ферм профили меньшего сечения. Для изготовления ферм планируется использовать квадратные профильные трубы одного типа, а подобрать требуемое сечение профильной трубы поможет дальнейший расчет.

Если балки обрешетки будут опираться сверху на узлы ферм, то нагрузку от навеса из профнастила и снега лежащего на этом профнастиле, можно считать сосредоточенной, приложенной в узлах фермы. Стержни фермы будут свариваться между собой, при этом стержни верхнего пояса скорее всего будут неразрезными длиной примерно 5.06 м. Однако будем считать, что все узлы фермы - шарнирные. Эти уточнения могут показаться незначительной мелочью, однако позволяют максимально ускорить и упростить расчет , по причинам, изложенным в другой статье. Единственное, что нам осталось определить для дальнейших расчетов, сосредоточенную нагрузку, но и это сделать не сложно, если профнастил или балки обрешетки уже рассчитаны. При расчете профнастила мы выяснили, что листы профнастила длиной 5.1-5.3 м представляют собой многопролетную неразрезную балку с консолью. Это означает, что опорные реакции для такой балки и соответственно нагрузки для нашей фермы будут не одинаковыми, однако изменения опорных реакций для 5 пролетной балки будут не такими уж и значительными и для упрощения расчетов можно считать, что нагрузка от снега, профнастила и обрешетки будет передаваться равномерно, как в случае с однопролетными балками. Такое допущение приведет только к небольшому запасу по прочности. В итоге мы получаем следующую расчетную схему для нашей фермы:

Рисунок 272.2 . Расчетная схема для треугольной фермы.

На рисунке 272.2 а) представлена общая расчетная схема нашей фермы, расчетная нагрузка составляет Q = 190 кг , что вытекает из расчетной снеговой нагрузки 180 кг/м 2 , веса профнастила и возможного веса балки обрешетки. На рисунке 272.2 б) показаны сечения, благодаря которым можно рассчитать усилия во всех стержнях фермы с учетом того что ферма и нагрузка на ферму является симметричной и значит достаточно рассчитывать не все стержни фермы, а чуть больше половины. А чтобы не запутаться во многочисленных стержнях при расчете, стержни и узлы ферм принято маркировать. Маркировка, показанная на рис.272.2 в) означает, что у фермы есть:

Стержни нижнего пояса: 1-а, 1-в, 1-д, 1-ж, 1-и;

Стержни верхнего пояса: 2-а, 3-б, 4-г, 5-е, 6-з;

Раскосы: а-б, б-в, в-г, г-д, д-е, е-ж, ж-з, з-и.

Если будет рассчитываться каждый стержень фермы, то желательно составить таблицу, в которую следует внести все стержни. Затем в эту таблицу будет удобно вносить полученное значение сжимающих или растягивающих напряжений.

Ну а сам расчет никаких особенных сложностей не представляет, если ферма будет свариваться из 1-2 видов профилей замкнутого сечения. Например, весь расчет фермы можно свести к тому, чтобы рассчитать усилия в стержнях 1-и, 6-з и з-и. Для этого достаточно рассмотреть продольные силы, возникающие при отсечении части фермы по линии IX-IX (рис. 272.2 г).

Но оставим сладкое на третье, и посмотрим как это делается на более простых примерах, для этого рассмотрим

сечение I-I (рис. 272.2.1 д)

Если указанным образом отсечь лишнюю часть фермы, то нужно определить усилия только в двух стержнях фермы. Для этого используются уравнения статического равновесия. Так как в узлах фермы шарниры, то и значение изгибающих моментов в узлах фермы равно нулю, а кроме того, исходя из тех же условий статического равновесия сумма всех сил относительно оси х или оси у также равна нулю. Это позволяет составить как минимум три уравнения статического равновесия (два уравнения для сил и одно для моментов), но в принципе уравнений моментов может быть столько же сколько узлов в ферме и даже больше, если использовать точки Риттера. А это такие точки в которых пересекаются две из рассматриваемых сил и при сложной геометрии фермы точки Риттера не всегда совпадают с узлами фермы. Тем не менее в данном случае у нас геометрия достаточно простая (до сложной геометрии мы еще успеем добраться) и потому для определения усилий в стержнях достаточно имеющихся узлов фермы. Но при этом опять же из соображений простоты расчета обычно выбираются такие точки, уравнение моментов относительно которой позволяет сразу определить неизвестное усилие, не доводя дело до решения системы из 3 уравнений.

Выглядит это примерно так. Если составить уравнение моментов относительно точки 3 (рис. 272.2.2 д), то в нем будут всего два члена, причем один из них уже известный:

М 3 = -Ql /2 + N 2-a h = 0 ;

N 2-a h = Ql/2 ;

где l - расстояние от точки 3 до точки приложения силы Q/2, которое в данном случае и является плечом действия силы, согласно принятой нами расчетной схемы l = 1.5 м ; h- плечо действия силы N 2-a (плечо показано на рис. 272.2.2 д) синим цветом).

При этом третий возможный член уравнения равен нулю, так как сила N 1-а (на рис. 272.2.2 д) показана серым цветом) направлена по оси, проходящей через точку 3 и значит плечо действия равно нулю. Единственное, что в этом уравнении нам неизвестно - это плечо действия силы N 2-а, впрочем определить его, владея соответствующими знаниями по геометрии, легко.

Наша ферма имеет расчетную высоту 0.8 м и общую расчетную длину 10 м. Тогда тангенс угла α составит tgα = 0.8/5 = 0.16, соответственно значение угла α = arctgα = 9.09 о. И тогда

h = l sin α

Теперь нам ничего не мешает определить значение силы N 2-a :

N 2-a = Ql /(2lsin α) = 190/(2·0.158) = 601.32 кг

Подобным же образом определяется значение N 1-а . Для этого составляется уравнение моментов относительно точки 2:

М 2 = -Ql /2 + N 1-a h = 0;

N 1-a h = Ql /2

N 1-a = Q/(2 tg α) = 190/(2·0.16) = 593.77 кг

Проверить правильность вычислений мы можем, составив уравнения сил:

ΣQ y = Q/2 - N 2-a sin α = 0; Q/2 = 95= 601.32·0.158 = 95 кг

ΣQ x = N 2-a cos α - N 1-a = 0; N 1-a = 593.77 = 601.32·0.987 = 593.77 кг

Условия статического равновесия выполняются и любое из уравнений сил, использованных для проверки, можно было использовать для определения усилий в стержнях. Вот, собственно и все, дальнейший расчет фермы - чистейшая механика, но на всякий случай рассмотрим еще

сечение II-II (рис. 272.2. e)

На первый взгляд кажется, что более простым будет уравнение моментов относительно точки 1 для определения силы N а-б , однако в этом случае потребуется для определения плеча силы сначала найти значение угла β. А вот если рассматривать равновесие системы относительно точки 3, то:

М 3 = -Ql /2 - Ql /3 + N 3-б h = 0 ;

N 3-б h = 5Ql /6 ;

N 3-б = 5Q/(6sin α) = 5·190/(6·0.158) = 1002.2 кг (работает на растяжение)

Ну а теперь все же определим значение угла β. Исходя из того, что известны все стороны некоего прямоугольного треугольника (нижний катет или длина треугольника - 1 м, боковой катет или высота треугольника - 0.16 м, гипотенуза - 1.012 м и даже угол α), то соседний прямоугольный треугольник с высотой 0.16 м и длиной 0.5 м будет иметь tgβ = 0.32 и соответственно угол между длиной и гипотенузой β = 17.744 о, полученный из арктангенса. И теперь проще составить уравнение сил относительно оси х :

ΣQ x = N 3-б cos α + N а-б cos β- N 1-а = 0;

N a-б = (N 1-а - N 3-б cos α)/cos β = (593.77 - 1002.2·0.987)/ 0.952 = - 415.61 кг

В данном случае знак "-" показывает, что сила направлена в сторону, противоположную от той, которую мы приняли при составлении расчетной схемы. И тут пришло время поговорить о направлении сил, точнее, о том значении, которое в это направление вкладывается. Когда мы заменяем внутренние усилия в рассматриваемом поперечном сечении стержней фермы, то под силой направленной от поперечного сечения подразумеваются растягивающие напряжения, если сила направлена к поперечному сечению, то подразумеваются сжимающие напряжения. С точки зрения статического равновесия не важно какое направление силы принимать при расчетах, если сила будет направлена в противоположную сторону, то значит у этой силы будет знак минус. Однако при расчете важно знать, на какое именно усилие рассчитывается данный стержень. Для растягиваемых стержней принцип определения необходимого сечения простейший:

При расчете стержней, работающих на сжатие, следует учитывать множество различных факторов и в общем виде формулу для расчета сжатых стержней можно выразить так:

σ = N/φF ≤ R

Примечание : расчетную схему можно составлять так, чтобы все продольные силы были направлены от поперечных сечений. В этом случае знак "-" перед значением силы, полученный при расчетах, будет показывать, что данный стержень работает на сжатие.

Так результаты предыдущего расчета показывают, что в стержнях 2-а и 3-б возникают растягивающие напряжения, в стержнях 1-а и а-б - сжимающие усилия. Ну а теперь вернемся к цели нашего расчета - определению максимальных нормальных напряжений в стержнях. Как и в обычной симметричной балке, у которой максимальные напряжения при симметричной нагрузке возникают в сечении, наиболее удаленном от опор, в ферме максимальные напряжения возникают в стержнях наиболее удаленных от опор, т.е. в стержнях, отсекаемых сечением IX-IX.

сечение IX-IX (рис. 272.2. г)

М 9 = -4.5Q/2 - 3.5Q - 2.5Q - 1.5Q -0.5Q + 3V A - 4.5N 6-з sin α = 0 ;

N 6-з = (15Q - 10.25Q)/(4.5sin α) = 4.75·190/(4.5·0.158) = 1269.34 кг (работает на сжатие)

где V A = 5Q , определяются опорные реакции ферм все по тем же уравнениям равновесия системы, так как ферма и нагрузки симметричные, то

V A = ΣQ y /2 = 5Q ;

так как горизонтальных нагрузок у нас пока не предусмотрено, то горизонтальная опорная реакция на опоре А будет равна нулю, поэтому H A показано на рисунке 272.2 б) светло фиолетовым цветом.

плечи у всех сил в данном случае разные, а потому сразу подставлены числовые значения плеч в формулу.

Чтобы определить усилие в стержне з-и, нужно сначала определить значение угла γ (на рисунке не показан). Исходя из того, что известны две стороны некоего прямоугольного треугольника (нижний катет или длина треугольника - 0.5 м, боковой катет или высота треугольника - 0.8 м, то tgγ = 0.8/0.5 = 1.6 и значение угла γ = arctgγ = 57.99 о. И тогда для точки 3

h = 3sin γ = 2.544 м. Тогда:

М 3 = - 1.5Q/2 - 0.5Q + 0.5Q + 1.5Q + 2.5Q - 1.5N 6-з sin α + 2.544N з-и = 0 ;

N з-и = (1.25Q - 4.5Q + 1.5N 6-з sin α) /2.544 = (332.5 - 617.5)/2.544 = -112 кг

И теперь проще составить уравнение сил относительно оси х :

ΣQ x = - N 6-з cos α - N з-и cos γ + N 1-и = 0;

N 1-и = N 6-з cos α + N з-и cos γ = 1269.34·0.987 - 112·0.53 = 1193.46 кг (работает на растяжение)

Так как верхний и нижний пояса фермы будут из одного типа профиля, то тратить время и силы на расчет стержней нижнего пояса 1-в, 1-д и 1-ж, равно как и стержней верхнего пояса 4-г и 5-е нет необходимости. Усилия в этих стержнях будут явно меньше уже определенных нами. Если бы ферма была бесконсольной, т.е. опоры располагались на концах фермы, то усилия в раскосах также были бы меньше уже определенных нами, однако у нас ферма с консолями и потому воспользуемся еще несколькими сечениями, чтобы определить усилия в раскосах по приведенному выше алгоритму (подробности расчета не приводятся):

N б-в = -1527.34 кг - работает на сжатие (сечение III-III, рис.272.2 ж), определялось по уравнению моментов относительно точки 1)

N в-г = 634.43 кг - работает на растяжение (сечение IV-IV, рис.272.2 з), определялось по уравнению моментов относительно точки 1)

N г-д = - 493.84 кг - работает на сжатие (сечение V-V, определялось по уравнению моментов относительно точки 1)

Таким образом самыми загруженными у нас являются два стержня N 6-з = 1269.34 кг и N б-в = - 1527.34 кг. Оба стержня работают на сжатие и если вся ферма будет изготавливаться из одного типа профиля, то достаточно рассчитать один из этих стержней по предельным напряжениям и на основе этих расчетов подобрать необходимое сечение профиля. Однако тут все не так просто, на первый взгляд кажется, что достаточно рассчитать стержень N б-в, но при расчете сжатых элементов большое значение имеет расчетная длина стержня. Так длина стержня N 6-з составляет 101.2 см, в то время как длина стержня N б-в составляет 59.3 см. Поэтому, чтобы не гадать, лучше рассчитать оба стержня.

стержень N б-з

Расчет сжатых стержней ничем не отличается от расчета центрально сжатых колонн , поэтому далее приводятся только основные этапы расчета без подробных пояснений.

по таблице 1 (см. ссылку выше) определяем значение μ = 1 (не смотря на то, что верхний пояс фермы будет из цельного профиля, расчетная схема фермы подразумевает шарнирное закрепление стержней в узлах фермы, поэтому более правильным будет принять вышеуказанное значение коэффициента).

Принимаем предварительно значение λ = 90, тогда по таблице 2 коэффициент изгиба φ = 0.625 (для стали С235 прочностью R y = 2350 кгс/см 2 , определяется интерполяцией значений 2050 и 2450)

Тогда требуемый радиус инерции составит:

Применив профильную трубу для монтажа ферм, можно создавать конструкции, рассчитанные на высокие нагрузки. Легкие металлоконструкции подходят для возведения сооружений, обустройства каркасов под дымоходы, монтажа опор для кровли и козырьков. Вид и габариты ферм определяют в зависимости от специфики использования, будь то домашнее хозяйство или промышленная сфера. Важно грамотно выполнить расчет фермы из профильной трубы, иначе конструкция может не выдержать эксплуатационные нагрузки.

Навес из арочных ферм

Виды ферм

Металлические фермы из трубопроката отличаются трудоемкостью в монтаже, но они экономичнее и легче конструкций из сплошных балок. Профилированная труба, которую изготавливают из круглой путем горячей или холодной обработки, в поперечном разрезе имеет вид прямоугольника, квадрата, многогранника, овала, полуовала или плоскоовальную форму. Удобнее всего монтировать фермы из квадратных труб.

Ферма – это металлоконструкция, в состав которой входит верхний и нижний пояс, а также решетка между ними. К элементам решетки относятся :

  • стойка – располагается перпендикулярно к оси;
  • раскос (подкос) – устанавливается под наклоном к оси;
  • шпренгель (вспомогательный подкос).

Конструктивные элементы металлической фермы

Фермы в первую очередь предназначены для перекрытия пролетов. За счет ребер жесткости они не деформируются даже при использовании длинных конструкций на сооружениях с большими пролетами.

Изготовление металлических ферм производится на земле или в производственных условиях. Элементы из профильных труб обычно скрепляются между собой при помощи сварочного аппарата или клепок, могут использоваться косынки, парные материалы. Чтобы смонтировать каркас навеса, козырька, крыши капитальной постройки, готовые фермы поднимают и крепят к верхней обвязке согласно разметке.

Для перекрытия пролетов применяются различные варианты ферм из металла. Конструкция может быть :

  • односкатной;
  • двухскатной;
  • прямой;
  • арочной.

Треугольные фермы, изготовленные из профильной трубы, используются как стропила, в том числе для монтажа простого односкатного навеса. Металлоконструкции в виде арок пользуются популярностью благодаря эстетичности внешнего вида. Но арочные конструкции требуют максимально точных расчетов, поскольку нагрузка на профиль должна распределяться равномерно.


Треугольная ферма для односкатной конструкции

Особенности конструкций

Выбор конструкции ферм навесов из профильной трубы, козырьков, стропильных систем под кровлей зависит от расчетных эксплуатационных нагрузок. По количеству поясов различаются :

  • опоры, составные части которой формируют одну плоскость;
  • подвесные конструкции, в состав которых входит верхний и нижний пояс.

В строительстве можно использовать фермы с различным контуром :

  • с параллельным поясом (самый простой и экономичный вариант, собирается из идентичных элементов);
  • односкатные треугольные (каждый опорный узел характеризуется повышенной жесткостью, за счет чего конструкция выдерживает серьезные внешние нагрузки, материалоемкость ферм небольшая);
  • полигональные (выдерживают нагрузки от тяжелого настила, но сложны в монтаже);
  • трапецеидальные (схожи по характеристикам с полигональными фермами, но этот вариант более простой по конструкции);
  • двухскатные треугольные (применяются для устройства крыши с крутыми скатами, характеризуются большой материалоемкостью, при монтаже много отходов);
  • сегментные (подходят для сооружений со светопрозрачной кровлей из поликарбоната, монтаж усложнен из-за необходимости изготавливать дугообразные элементы с идеальной геометрией для равномерного распределения нагрузок).

Очертания поясов ферм

В соответствии с величиной угла наклона типовые фермы подразделяют на следующие виды :


Основы расчета

Перед тем как рассчитать ферму, необходимо подобрать подходящую конфигурацию крыши, учитывая габариты сооружения, оптимальное количество и угол наклона скатов. Также следует определить, какой контур поясов подойдет для выбранного варианта крыши – при этом принимаются во внимание все эксплуатационные нагрузки на кровлю, включая осадки, ветровую нагрузку, вес людей, производящих работы по обустройству и обслуживанию навеса из профильной трубы или кровли, монтажу и ремонту оборудования на крыше.

Чтобы выполнить расчет фермы из профильной трубы, необходимо определить длину и высоту металлоконструкции. Длина соответствует расстоянию, которое должна перекрывать конструкция, при этом высота зависит от запроектированного угла наклона ската и выбранного контура металлоконструкции.

Расчет навеса в итоге сводится к тому, чтобы определить оптимальные промежутки между узлами фермы. Для этого требуется рассчитать нагрузку на металлоконструкцию, выполнить расчет профильной трубы.

Неправильно рассчитанные каркасы кровли несут угрозу для жизни и здоровья людей, поскольку тонкие или недостаточно жесткие металлоконструкции могут не выдержать нагрузок и разрушиться. Поэтому рекомендуется доверить расчет металлической фермы профессионалам, знакомым со специализированными программами .

Если принято решение выполнить вычисления самостоятельно, необходимо воспользоваться справочными данными, в том числе о сопротивлении трубы на изгиб, руководствоваться СНиП. Правильно рассчитать конструкцию без соответствующих знаний сложно, поэтому рекомендуется найти пример расчета типовой фермы нужной конфигурации и подставить в формулу необходимые значения .

На этапе проектирования составляется чертеж фермы из профильной трубы. Подготовленные чертежи с указанием размеров всех элементов упростят и ускорят изготовление металлоконструкций.


Чертеж с размерами элементов

Рассчитываем ферму из стальной профильной трубы

  1. Определяется размер пролета постройки, который требуется перекрыть, выбирается форма крыши и оптимальный угол наклона ската (или скатов).
  2. Подбираются подходящие контуры поясов металлоконструкции с учетом назначения постройки, формы и размеров крыши, угла наклона, предполагаемых нагрузок.
  3. Рассчитав приблизительные габариты фермы, следует определить, можно ли изготовить металлоконструкции в заводских условиях и доставить их на объект автотранспортом, или сварка ферм из профильной трубы будет выполнена непосредственно на стройплощадке по причине большой длины и высоты конструкций.
  4. Далее требуется рассчитать габариты панелей, основываясь на показателях нагрузок при эксплуатации кровли – постоянных и периодических.
  5. Чтобы определить оптимальную высоту конструкции в середине пролета (Н), используют следующие формулы, где L – длина фермы:
    • для параллельных, полигональных и трапецеидальных поясов: Н=1/8×L, при этом уклон верхнего пояса доложен составлять приблизительно 1/8×L или 1/12×L;
    • для металлоконструкций треугольной формы: Н=1/4×L либо Н=1/5×L.
  6. Угол установки раскосов решетки составляет от 35° до 50°, рекомендуемое значение 45°.
  7. На следующем этапе следует определить расстояние между узлами (обычно оно соответствует ширине панели). Если длина пролета превышает 36 метров, требуется вычисление строительного подъема – обратно погашаемого изгиба, который воздействует на металлоконструкцию при нагрузках.
  8. На основании измерений и вычислений готовится схема, согласно которой будет вестись изготовление ферм из профильной трубы.

Изготовление конструкции из профильной трубы
Чтобы обеспечить необходимую точность расчетов, используйте строительный калькулятор – подходящую специальную программу. Так вы сможете сопоставить свои и программные расчеты для того, чтобы не допустить большого несоответствия в размерах!

Арочные конструкции: пример расчета

Чтобы сварить ферму для навеса в виде арки, применяя профильную трубу, необходимо правильно рассчитать конструкцию. Рассмотрим принципы расчета на примере предполагаемого сооружения с пролетом между опорными конструкциями (L) 6 метров, шагом между арками 1,05 метра, высотой фермы 1,5 метра – такая арочная ферма выглядит эстетично и способна выдержать высокие нагрузки. Длина стрелы нижнего уровня арочной фермы при этом составляет 1,3 метра (f), а радиус окружности в нижнем поясе будет равен 4,1 метра (r). Величина угла между радиусами: а=105.9776°.


Схема с размерами арочного навеса

Для нижнего пояса длину профиля (mн) рассчитывают по формуле:

mн = π×R×α/180 , где:

mн – длина профиля из нижнего пояса;

π – постоянная величина (3,14);

R – радиус окружности;

α – угол между радиусами.

В результате получаем:

mн = 3,14×4,1×106/180 = 7,58 м

Узлы конструкции располагают в участках нижнего пояса с шагом 55,1 см - допускается округлить значение до 55 см, чтобы упростить сборку конструкции, но увеличивать параметр не следует. Расстояния между крайними участками требуется рассчитать индивидуально.

Если длина пролета составляет менее 6 метров, вместо сварки сложных металлоконструкций можно воспользоваться одинарной или двойной балкой, выполнив сгиб металлического элемента под выбранным радиусом. В этом случае расчет арочных ферм не требуется, но важно правильно подобрать сечение материала, чтобы конструкция выдерживала нагрузки.

Профильная труба для монтажа ферм: требования к расчету

Чтобы готовые конструкции перекрытий, в первую очередь крупногабаритные, выдерживали проверку на прочность на протяжении всего срока эксплуатации, трубопрокат для изготовления ферм подбирается на основании:

  • СНиП 07-85 (взаимодействие снеговой нагрузки и веса элементов конструкций);
  • СНиП П-23-81 (о принципах работы со стальными профилированными трубами);
  • ГОСТ 30245 (соответствие сечения профильных труб и толщины стенок).

Данные из указанных источников позволят ознакомиться с видами профильных труб и выбрать оптимальный вариант с учетом конфигурации сечения и толщины стенок элементов, конструктивных особенностей фермы.


Навес для авто из трубопроката

Фермы рекомендуется изготавливать из трубопроката высокого качества, для арочных конструкций желательно выбрать легированную сталь. Чтобы металлоконструкции были устойчивы к коррозии, сплав должен включать большой процент углерода. Металлоконструкции из легированной стали не нуждаются в дополнительной защитной окраске.

Зная, как сделать решетчатую ферму, можно смонтировать надежный каркас под светопрозрачный навес или кровлю. При этом важно учитывать ряд нюансов.

  • Самые прочные конструкции монтируются из металлопрофиля с сечением в виде квадрата или прямоугольника за счет наличия двух ребер жесткости.
  • Основные компоненты металлоконструкции крепятся между собой с использованием спаренных уголков и прихваток.
  • При стыковке деталей каркаса в верхнем поясе требуется использовать двутавровые разносторонние уголки, при этом соединять следует по меньшей стороне.
  • Сопряжение частей нижнего пояса крепят с установкой равносторонних уголков.
  • Стыкуя основные части металлоконструкций большой длины, применяют накладные пластины.

Важно представлять, как сварить ферму из профильной трубы, если металлоконструкцию требуется собрать непосредственно на строительной площадке. Если нет навыков ведения сварочных работ, рекомендуется пригласить сварщика с профессиональным оборудованием.


Сварка элементов фермы

Стойки металлоконструкции монтируют под прямым углом, раскосы – под наклоном в 45°. На первом этапе нарезаем из профильной трубы элементы в соответствии с размерами, указанными на чертеже. Собираем на земле основную конструкцию, проверяем ее геометрию. Затем варим собранный каркас, используя уголки и накладные пластины, где они требуются.

Обязательно проверяем прочность каждого сварного шва . От их качества и точности расположения элементов зависит прочность и надежность сваренных металлоконструкции, их несущая способность. Готовые фермы поднимают наверх и крепят к обвязке, соблюдая шаг установки согласно проекту.

Рано или поздно у владельцев частного дома возникает необходимость возвести на участке навес для машины или летнего отдыха, беседку, небольшую загородку с крышей для домашних животных, навес над поленницей. Чтобы кровля над таким сооружением была надежно закреплена, необходимо правильно спроектировать и смонтировать металлические несущие конструкции.

Мы приветствуем нашего уважаемого читателя и предлагаем ему статью о том, что такое фермы из профильной трубы, как их правильно рассчитать и смонтировать .

Ферма – это конструкция из прямолинейных элементов, соединенных между собой в узлах в прочную систему неизменяемой геометрической формы. Чаще всего встречаются плоские конструкции, но в больших нагруженных конструкциях применяют объемные (пространственные) фермы. Практически в частных домах фермы выполняют из дерева и металла. Из дерева изготавливают небольшие конструкции стропил, навесов, беседок. Зато прочный и высокотехнологичный металл – практически идеальный материал для несущих металлоконструкций.

Для изготовления сложных конструкций применяют прокат сплошного сечения и трубы. Профильные трубы (квадрат, прямоугольник) имеют большую устойчивость к смятию и изгибу, небольшие конструкции для дома монтируют без применения сварки , поэтому для усадебных построек чаще всего используют именно профильную трубу.

Конструкционные особенности ферм

Составляющие элементы конструкции фермы:

  • Пояс.
  • Стойка – вертикальный элемент, соединяющий верхний и нижний пояс.
  • Раскос (подкос).
  • Шпренгель – опорный раскос.
  • Фасонки, накладки, косынки, заклепки, болты – всевозможные вспомогательные и крепежные материалы.

Высоту фермы считают от самой нижней точки нижнего пояса до самой верхней точки. Пролет – расстояние между опорами. Подъем – отношение высоты фермы к пролету. Панелью называют расстояние между узлами пояса.

Виды ферм из профтрубы

Фермы подразделяются по очертанию поясов. Бывают двухпоясные и трехпоясные разновидности. В небольших сооружениях применяются более простые двухпоясные фермы. Каждая разновидность имеет определенный уклон и высоту в зависимости от длины пролета и формы фермы.

Типы ферм по очертаниям поясов: балки с параллельными поясами (прямоугольные), треугольные (двускатные и односкатные), трапецеидальные (двускатные и односкатные), сегментные (параболические), полигональные (многоугольные), консольные; с ломаным приподнятым или вогнутым нижним поясом и разнообразной формой верхнего пояса; арочные с горизонтальным и арочным нижним поясом; сложные комбинированные формы.

Фермы также различают по типам решеток – см. на рисунке. В частных постройках чаще всего встречаются решетки треугольного и раскосного типа – более простые и менее металлоемкие. Треугольные решетки обычно применяются в прямоугольных и трапецеидальных конструкциях, раскосные – в треугольных.

Прежде чем возводить любую конструкцию, следует определиться с выбором материала. При покупке металлического профиля или труб следует внимательно осмотреть заготовки – нет ли трещин, раковин, наплывов, нестыковок по шву, большого количества помятых и погнутых заготовок. При покупке оцинкованных материалов – желательно убедиться в качестве покрытия – нет ли отслоений и наплывов.

При покупке необходимо потребовать копию сертификата и чек. Обязательно нужно убедиться в соответствии толщине стенки трубы заявленной в документах. Трубы в гараже на коленке не сделаешь, и подделок не бывает, но на плохое качество материала можно натолкнуться, поэтому покупать лучше в достаточно крупных магазинах.

Какой материал выбрать для каркаса

В большинстве случаев для каркаса усадебных построек или кровли дома выбирают сталь. Для очень небольших конструкций иногда используют алюминиевые и – обычно в покупных изделиях (тентах, качалках). Для возведения металлоконструкций можно использовать трубы полого сечения и профиля сплошного сечения (круг, полосу, квадрат, швеллер, двутавр).

Огромным преимуществом прямоугольных и квадратных труб по сравнению с профилем того же веса является высокая устойчивость к смятию и другим деформациям. Поэтому сплошные профиля можно заменить гораздо более легкими профтрубами – это очень значительно облегчает (в 2 раза и больше) и удешевляет конструкцию трубчатого типа.

Размеры сечения труб выбирают в зависимости от длины пролета и расстояния между опорами и фермами. В частных усадьбах навесы и другие конструкции не очень большие, и можно воспользоваться советами специалистов или найти готовые чертежи в интернете.


При расстоянии между опорами до 2 м для небольших навесов с пролетами длиной до 4 м подойдут профиля 40×20х2 мм, при пролетах до 5 м – 40×40х3, 60×30х3 мм; пролетах длиннее 5 м – 60×40х3, 60×60х3 мм. Если планируется автомобильный навес на две машины шириной 8-10 м, то профиль потребуется от 60×60 до 100×100 с толщиной стенки 3-4 мм. Размеры профиля зависят от расстояния между фермами.

Профтрубы поступают в продажу отрезками длиной 6 и 12 м. При длине 12 м металл расходуется экономнее, но для транспортировки таких труб нужен длинномер. Перед покупкой материалов следует продумать, как вы будете отрезать заготовки и сколько их разместится в трубе длиной 6 м или 12 м, и подсчитать, сколько отрезков профтрубы Вам понадобится.

Ориентироваться на номинальный вес нельзя – вес 1 м.п. в конкретной партии будет отличаться от номинального, и скорее всего в сторону увеличения (изготавливать изделия с более толстой стенкой выгоднее продавцам – цена идет за тонну). При покупке по весу материал придется докупать и довозить – а это лишние расходы.

Преимущества и недостатки разных металлов

Практически для конструкционных профильных труб используются стали следующих видов: углеродистые обыкновенного качества и качественные, конструкционные, легированные. Трубы бывают с защитным цинковым покрытием. Используют и алюминий – но редко, для небольших, чаще сезонных конструкций. Алюминиевые профиля применяют для небольших конструкций.

Традиционно для небольших конструкций в частной усадьбе для возведения стальных конструкций с фермами применяют углеродистую сталь Ст3сп, Ст3пс, иногда оцинкованную. Такая сталь имеет достаточную прочность для обеспечения надежности конструкции, разницы по коррозионной стойкости у всех трех типов сталей практически нет.

Если на конструкции будут попадать осадки, рано или поздно проржавеют и изделия из конструкционных и изделия из легированных сталей. Небольшое количество легирующих элементов от коррозии не защищают (для конструкций можно применять низколегированные стали типа 30ХГСА, 30ХГСН, 38ХА – в содержание легирующих элементов в них 2-4 %, и на коррозионную стойкость это количество не влияет).


По прочности конструкционные и легированные стали должны быть немного долговечнее углеродистых – они более устойчивы к циклическим нагрузкам. Но это качество у сталей проявляется после термообработки – а закалка с отпуском могут покоробить трубы, и обычно такую термообработку на готовых изделиях никто не делает. На бесшовных трубах может быть проведен отжиг – после отжига в металле снимаются остаточные напряжения (наклеп), но он становится более мягким.

Конструкционные стали (20А, 45, 40, 30А) имеют более высокое качество и более высокую цену. Легированные стали еще дороже (и есть вероятность, что Вам продадут трубы из стали 3 взамен легированной). Поэтому при монтаже конструкций шириной менее 20 м не имеет смысла покупать профтрубы из легированной или конструкционной стали. Применять оцинкованную профтрубу однозначно имеет смысл, если монтаж будет производиться при помощи краб-систем.

Если монтаж будет производиться путем сварки, сварные швы будут ржаветь так же быстро, как и обычный металл без покрытия . Но если тщательно следить за швами, регулярно проводить антикоррозионную обработку (очистку, грунтовку, окраску), то оцинкованная труба предпочтительней. Если же Вам нужен временный навес на 10 лет для стройматериалов, а затем Вы навес будете сносить – тем более не заморачивайтесь, покупайте обычные трубы из углеродистой стали без покрытия.

Если Вы планируете возводить на участке очень большой навес или ангар с большой длиной пролета, стоит обратиться к профессиональным строителям и сделать проект – они определят, какую сталь Вам выбрать.

Сделать самому или заказать

Фермы для навеса над машиной или кровли беседки имеют небольшие размеры и простую конструкцию – чаше всего треугольную с несколькими подкосами и стойками. Выполнить такую конструкцию можно и самостоятельно, если у Вас имеются хотя бы начальные навыки сварщика и Вы не боитесь осваивать новые работы.

Но изготовление ферм требует аккуратности, наличия помощника, очень ровного участка в усадьбе – для раскладки и сварки конструкций, наличия сварочного аппарата и времени. Можно заказать готовые конструкции на заводе или строительной фирме, а смонтировать самому.

Требования к расчету профильной трубы для строительства фермы

При расчетах размеров и толщины стенки профильных труб, требуемых для сооружения Ваших металлоконструкций; учитываются следующие условия:

  • Размеры металлоконструкции, и в частности, длина, шаг опор – расстояние между опорами.
  • Высота опор и ферм.
  • Форма ферм.
  • Возможные особенности геологических условий (сейсмическая активность, возможность оползней).
  • Вес покрытия.


Что будет, если рассчитать неправильно

При неправильных расчетах возможны следующие последствия:

  • Конструкции фермы будут деформироваться под весом снега, мокрой листвы.
  • В самом неудачном случае конструкции будут деформироваться под собственным весом.
  • Вся конструкция может обрушиться при сильном ветре.
  • Деформация рано или поздно приведет к разрушению фермы и всей конструкции, что опасно для человека и может повредить предметы, находящиеся под навесом – машину, например.
  • Непрочная и подвижная конструкция будет приводить к разрушению кровли, положенной на ферму.
  • При применении слишком мощного и тяжелого профиля неоправданно возрастают затраты на материалы и работы при возведении металлоконструкции.

Проектируем ферму и ее элементы

Полный и точный расчет нагрузки на ферму вместе с эпюрами сложен, и для его выполнения следует обратиться к специалистам.

При проектировании крупных навесов, ангаров, гаражей из металлоконструкций точный расчет требуемого профиля необходим, но для строительства не слишком больших навесов или беседок в частной усадьбе можно воспользоваться общеизвестными рекомендациями специалистов.

Для очень маленьких конструкций (навес в вольере для животных, навес над запасом дров) достаточно использовать трубы размером 40×20 мм с толщиной стенки 2 мм; для беседок и навесов над столами, барбекю или местами отдыха – 40×40 мм с толщиной стенки 3 мм; навес над местом для автомобиля – от 60×40 до 100×100 мм с толщиной стенки 3-4 мм.

Если ферм и опор у навеса несколько и шаг опор менее 2 м, можно взять более тонкую трубу, если всего 4 опоры и две фермы и длина пролета 6-8 м и больше – более толстую.

Допустимые нагрузки на фермы приведены в таблице:

Ширина пролета, м Размер трубы на толщину стенки, мм 1 2 3 4 5 6
Для профильной трубы
40×40х2 709 173 72 35 16 5
40×40х3 949 231 96 46 21 6
50×50х2 1165 286 120 61 31 14
50×60х3 1615 396 167 84 43 19
60×60х2 1714 422 180 93 50 26
60×60х3 2393 589 250 129 69 35
80×80х3 4492 1110 478 252 144 82
100×100х3 7473 1851 803 430 253 152
100×100х4 9217 2283 990 529 310 185
120×120х4 113726 3339 1484 801 478 296
140×140х4 19062 4736 2069 1125 679 429
Для прямоугольной трубы (при вертикальном расположении большей стороны)
50×25х2 684 167 69 34 16 6
60×40х2 1255 308 130 66 35 17
80×40х2 1911 471 202 105 58 31
80×40х3 2672 658 281 146 81 43
80×60х3 3583 884 380 199 112 62
100×50х4 5489 1357 585 309 176 101
120×80х3 7854 1947 846 455 269 164

Чертежи и схемы

При изготовлении металлоконструкций выполнение чертежа с точными размерами обязательно! Это позволит закупить нужное количество материала, сэкономит время при сборке и подготовке заготовок, позволит без проблем проконтролировать размеры металлоконструкции в процессе монтажа и уже готового сооружения. В данном случае от точности сборки зависит безопасность Вас и Ваших домочадцев – рухнувшее от снега или от ветра сооружение может принести много бед.

Основы расчета фермы

Типы ферм зависят от формы кровли, а формы кровли сооружения в усадьбе выбирают в зависимости от назначения и места расположения металлоконструкций. Консольные и примыкающие к дому фермы обычно выполняют односкатными треугольными, отдельно стоящие навесы – с полигональными, треугольными, сегментными конструкциями и арками. Беседки могут иметь шести- и восьмискатную кровлю или кровлю фантазийной конструкции с фермами нестандартной конструкции.

Для расчета ферм необходимо рассчитать нагрузку на кровлю и на одну ферму. При расчетах учитывают нагрузку снегового покрова, кровельного покрытия, обрешетки, вес самих конструкций. Точные расчеты – задача для профессионала-строителя. Основой для расчета служат СП 20.13330.2016 «Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85» и СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП II-23-81» .


Для расчетов применяются метод вырезания вырезание узлов (участков, где стержни соединены шарнирно); метод Риттера; метод замены стержней Геннеберга. В современных компьютерных программах чаще применяется метод вырезания узлов.

Лучше воспользоваться готовым типовым проектом или нашими рекомендациями по выбору профилей. Собрать ферму простой трапециевидной или треугольной конструкции не слишком сложно, и при наличии опыта сварки и монтажа металлоконструкций самостоятельный монтаж навесов и беседок вполне возможен. Если Вы хотите соорудить большой навес с длиной фермы 10 м и больше – нужно выполнить проект у специалистов.

Влияние угла наклона

На конструкцию фермы в первую очередь влияет угол наклона скатов (ската). Угол наклона выбирается в первую очередь в зависимости от формы кровли и размещения металлоконструкции. У примыкающих к зданиям навесов должен быть больший угол наклона кровли – для более быстрого скатывания сползающего с кровли снега и стока льющейся воды.

У одиночных конструкций угол наклона кровли может быть меньше. Угол наклона зависит также от количества выпадающих в Вашем регионе осадков – чем больше осадков, тем больше должен быть угол наклона кровли. Чем круче кровля, тем меньше осадков на ней задерживается.

Небольшой уклон ската – до 15° — используется на небольших отдельно стоящих навесах. Высота ската примерно равна 1/7-1/9 длины пролета. Применяют фермы трапециевидной формы.

Уклон от 15° до 22° — высота ската равна 1/7 длины пролета.

Уклон от 22° до 30°- 35° — высота ската равна 1/5 длины пролета, при таком уклоне применяют обычно треугольные конструкции, иногда с ломаным нижним поясом для облегчения конструкции.

Параметры базовых углов

Для правильного расчета количества и длин отдельных элементов фермы из профтрубы необходимо определить базовые углы между элементами. В общем случае нижний пояс перпендикулярен опорам, верхний пояс имеет наклон к горизонтали в зависимости от угла наклона кровли. Оптимальный угол наклона раскосов к горизонтали/вертикали — 45°, стойки должны быть строго вертикальны.

Точный угол наклона кровли либо задается проектом, либо находится по соотношениям, приведенным выше (для уклона до 15° — высота ската примерно равна 1/7-1/9 длины пролета; для уклона от 15° до 22° — 1/7 длины пролета; для уклона от 22° до 30°- 35° — высота ската равна 1/5 длины пролета ).

Определив точный угол наклона кровли, определяют длины заготовок для изготовления фермы – эта информация потребуется при выполнении работ.

Значимые факторы выбора участка

Если есть выбор, для установки металлоконструкций следует выбрать ровный участок, не подверженный оползням и заболачиванию. Но в небольших приусадебных участках выбора чаще всего нет – навес для машины размещают сразу за воротами, веранду возле дома, беседку в глубине участка. Возможно, участок придется выровнять, иногда осушить.

Если есть опасность сползания пластов земли, или Вы проживаете в сейсмоопасном районе, проектирование проекта любой конструкции выше собачьей конуры следует предоставить профессионалам для обеспечения Вашей же безопасности.


Как рассчитать нагрузку

Снеговая нагрузка на 1 м² кровли рассчитывается по СП 20.13330.2017 «Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85» в зависимости от региона. При расчетах берется не площадь кровли, а площадь проекции кровли на горизонталь. Аналогично рассчитывается вес обрешетки и кровельного покрытия. По чертежу рассчитывается вес одной фермы и умножается на их количество.

Нагрузка на одну ферму рассчитывается делением суммы общей нагрузки на кровлю снега, веса обрешетки и покрытия, веса самих конструкций, на количество ферм.

Входная дверь и козырек

Козырьки над входной дверью имеют небольшие размеры и выполняются консольными.

В ширину козырек должен быть равен ширине крыльца + по 300 мм с каждой стороны. По глубине навес должен закрывать ступени. Длина козырька равна сумме длины площадки и ступеней. Длина верхней площадки должна быть в полтора раза шире двери, то есть 0,9×1,5 = 1,35 м. Плюс по 250 мм на каждую ступеньку.

Например:

для крыльца с двумя ступенями и шириной 1200 мм размеры накрываемой площади (горизонтальной проекции козырька) равны:

длина (глубина козырька) = 1,35 + 2×0,25 = 1,85 м;

ширина = 1,2 + 0,3×2 = 1,8 м.



Бесплатные программы для расчета

  • На сайте http://sopromatguru.ru/raschet-balki.php .
  • На сайте http://rama.sopromat.org/2009/?gmini=off .

Пример расчета

Пример расчета фермы отдельно стоящего навеса для автомобиля среднего класса (D):

Ширина автомобиля 1,73 м, длина 4,6 м.

Минимальная ширина фермы между опорами:

1,73 + 1 = 2,73 м, для удобства открывания дверей принимаем ширину 3,5 м.

Ширина фермы с учетом свесов кровли:

3,5 + 2×0,3 = 4,1 м.

Длина навеса:

4,6 + 1 = 5,6 м, принимаем длину 6 м.

При такой длине можно устанавливать опоры через 2 м или меньше. Для облегчения несущих конструкций принимаем расстояние между опорами 1,5 м.

Форму кровли принимаем треугольную двускатную – она самая простая в изготовлении и одновременно экономичная по расходу материалов. Угол наклона кровли принимаем 30° – при таком угле наклона на кровле не будет задерживаться снег и опавшие листья.

Высота фермы в центре (центральной стойки) будет равняться:

Итого: длина нижнего пояса фермы составляет 4,1 м; верхнего пояса – две половинки по 2,355 м, общая длина 4,71 м, стойка в центре имеет высоту 1,16 м.

Для таких недлинных ферм вполне достаточно использовать квадратную трубу 40×40 мм с толщиной стенки 3 мм.


Основные этапы работ по изготовлению и монтажу ферм своими руками

До монтажа ферм выполняют работы по планировке участка, установке опор, бетонированию фундаментов опор, привариванию боковых связей или боковых ферм. Затем монтируют поперечные фермы.

Порядок выполнения работ по изготовлению и монтажу ферм:

  • На ровной поверхности сваривают фермы.
  • Обрабатывают фермы антикоррозионной грунтовкой, дважды окрашивают. Не окрашивают места под приварку ферм к опорам. Можно эти работы выполнить и после монтажа ферм, но на высоте красить неудобно.
  • Поднимают фермы, устанавливают на опоры, выверяют углы и горизонтальность, приваривают к опорам. Эти работы выполняет бригада из нескольких человек.
  • Закрашивают места сварки.
  • Монтируют обрешетку, укладывают кровельное покрытие.

Как сварить фермы

Сборку ферм производят на ровной площадке. Перед сборкой нарезают заготовки, зачищают от ржавчины, сошлифовывают заусенцы на срезах. Элементы фермы скрепляют струбцинами, проверяют размеры, углы, плоскостность. Сваривают конструкцию с одной стороны, дают остыть, переворачивают на другую сторону. Снимают струбцины и проваривают вторую сторону. Затем сошлифовывают валик на шве. Особенности сварки ферм Вы можете увидеть на нашем видео:

Если у Вас небольшие навыки сварщика и монтажника, можно заказать изготовление фермы в специализированной организации или бригаде.

Заключение

Устройство навеса, монтаж ферм – сложная квалифицированная работа. Небольшие навесы и беседки можно выполнить самостоятельно с помощью членов семьи.

Монтаж крупных металлоконструкций лучше доверить бригаде профессионалов. Но за профессионалами тоже нужен контроль. Мы прощаемся с нашим уважаемым читателем и надеемся, что наша статья поможет Вам разобраться в видах ферм, выборе конструкции, материала и порядке проведения работ по сооружению навесов и беседок на Вашем участке. Подписывайтесь на рассылку нашего сайта, приводите друзей, делитесь интересной информацией с собеседниками в соцсетях.

Изучение данных вопросов необходимо в дальнейшем для изучения динамики движении тел с учетом трения скольжения и трения качения, динамики движения центра масс механической системы, кинетических моментов, для решения задач в дисциплине «Сопротивление материалов ».

Расчет ферм. Понятие о ферме. Аналитический расчет плоских ферм.

Фермой называется жесткая конструкция из прямолинейных стержней, соединенных на концах шарнирами . Если все стержни фермы лежат в одной плоскости, ферма называется плоской. Места соединения стержней фермы называют узлами. Все внешние нагрузки к ферме прикладываются только в узлах. При расчете фермы трением в узлах и весом стержней (по сравнению с внешними нагрузками) пренебрегают или распределяют веса стержней по узлам.

Тогда на каждый из стержней фермы будут действовать две силы, приложен-ные к его концам, которые при равновесии могут быть направлены только вдоль стержня. Следовательно, можно считать, что стержни фермы работают только на растяжение или на сжатие. Огра-ничимся рассмотрением жестких плоских ферм, без лишних стержней, образованных из треугольников. В таких фермах число стержней k и число узлов n связаны соотношением

Расчет фермы сводится к определению опорных реакций и уси-лий в ее стержнях.

Опорные реакции можно найти обычными методами статики, рассматривая ферму в целом как твердое тело. Перейдем к определе-нию усилий в стержнях.

Метод вырезания узлов. Этим методом удобно пользоваться, когда надо найти усилия во всех стержнях фермы. Он сводится к по-следовательному рассмотрению условий равновесия сил, сходящихся в каждом из узлов фермы. Ход расчетов поясним на конкретном примере.

Рис.23

Рассмотрим изображенную на рис. 23,а ферму, образованную из одинаковых равнобедренных прямоугольных треугольников; действую-щие на ферму силы парал-лельны оси х и равны: F 1 = F 2 = F 3 = F = 2.

В этой ферме число узлов n = 6, а число стержней k = 9. Следовательно, соот-ношение выполняется и ферма является жесткой, без лишних стержней.

Составляя уравнения рав-новесия для фермы в целом, найдем, что реакции опор направлены, как пока-зано на рисунке, и численно равны;

Y A = N = 3/2F = 3H

Переходим к определению усилий в стержнях.

Пронумеруем узлы фермы римскими цифрами, а стержни — арабскими. Искомые усилия будем обозначать S 1 (в стержне 1), S 2 (в стержне 2) и т. д. Отрежем мысленно все узлы вместе со сходящимися в них стержнями от осталь-ной фермы. Действие отброшенных частей стержней заменим силами, которые будут направлены вдоль соответствующих стержней и численно равны искомым усилиям S 1 , S 2.


Изображаем сразу все эти силы на рисунке, направляя их от узлов, т. е. считая, все стержни растя-нутыми (рис. 23, а; изображенную картину надо представлять себе для каждого узла так, как это показано на рис. 23, б для узла III). Если в результате расчета величина усилия в каком-нибудь стержне получится отрицательной, это будет означать, что данный стержень не растянут, а сжат. Буквенных обозначений для сил, действующих вдоль стержней, ни рис. 23 не вводам, поскольку ясно, что силы, действующие вдоль стержня 1, равны численно S 1 , вдоль стержня 2 — равны S 2 и т. д.

Теперь для сил, сходящихся в каждом узле, составляем последо-вательно уравнения равновесия:

Начинаем с узла 1, где сходятся два стержня, так как из двух уравнений равновесия можно определить только два неизвестных усилия.

Составляя уравнения равновесия для узла 1, получим

F 1 + S 2 cos45 0 = 0, N + S 1 + S 2 sin45 0 = 0.

Отсюда находим:

Теперь, зная S 1 , переходим к узлу II. Для него уравнения равнове-сия дают:

S 3 + F 2 = 0, S 4 - S 1 = 0,

S 3 = -F = -2H, S 4 = S 1 = -1H.

Определив S 4 , составляем аналогичным путем уравнения равновесия сначала для узла III, а затем для узла IV. Из этих уравнений находим:

Наконец, для вычисления S 9 составляем уравнение равновесия сил, сходящихся в узле V, проектируя их на ось By. Получим Y A + S 9 cos45 0 = 0 откуда

Второе уравнение равновесия для узла V и два уравнения для узла VI можно составить как поверочные. Для нахождения усилий в стержнях эти уравнения не понадобились, так как вместо них были использованы три уравнения равновесия всей фермы в целом при определении N, Х А, и Y А.

Окончательные результаты расчета можно свести в таблицу:

Как показывают знаки усилий, стержень 5 растянут, остальные стер-жни сжаты; стержень 7 не нагружен (нулевой, стержень).

Наличие в ферме нулевых стержней, подобных стержню 7, обна-руживается сразу, так как если в узле, не нагруженном внешними силами, сходятся три стержня, из которых два направлены вдоль одной прямой, то усилие в третьем стержне равно нулю. Этот результат получается из уравнения равновесия в проекции на ось, перпендикулярную к упомянутым двум стержням.

Если в ходе расчета встретится узел, для которого число неизве-стных больше двух, то можно воспользоваться методом сечений.

Метод сечений (метод Риттера). Этим методом удобно поль-зоваться для определения усилий в отдельных стержнях фермы, в ча-стности, для проверочных расчетов. Идея метода состоит в том, что ферму разделяют на две части сечением, проходящим через три стержня, в которых (или в одном из которых) требуется определить усилие, и рассматривают равновесие одной из этих частей. Действие отброшенной части заменяют соответствующими силами, направляя их вдоль разрезанных стержней от узлов, т. е. считая стержни рас-тянутыми (как и в методе вырезания узлов). Затем составляют урав-нения равновесия, беря центры моментов (или ось проекций) так, чтобы в каждое уравнение вошло только одно неизвестное усилие.

Графический расчет плоских ферм.

Расчет фермы мето-дом вырезания узлов может производиться графически. Для этого сначала, определяют опорные реакции. Затем, последовательно отсекая от фермы каждый из ее узлов, нахо-дят усилия в стержнях, сходящихся в этих узлах, строя соответствую-щие замкнутые силовые многоугольники. Все построения проводятся в масштабе, который должен быть заранее выбран. Рас-чет начинают с узла, в котором сходятся два стержня (иначе не удастся определить неизвест-ные усилия).

Рис.24

В качестве примера рас-смотрим ферму, изображен-ную на рис. 24, а. В этой ферме число узлов n = 6, а число стержней k = 9. Следовательно, соотношение выполняется и ферма является жесткой, без лиш-них стержней. Опорные реак-ции и для рассматри-ваемой фермы, изображаем на-ряду с силами и , как известные.

Определение усилий в стержнях начинаем с рас-смотрения стержней, сходя-щихся в узле I (узлы нуме-руем римскими цифрами, а стержни - арабскими). Мысленно отрезав от этих стержней остальную часть фермы, отбрасываем ее действие отброшенной части также мысленно заменяем силами и , которые должны быть направлены вдоль стержней 1 и 2. Из сходящихся в узле I сил , и строим замкнутый треугольник (рис. 24, б).

Для этого изображаем сначала в выбранном масштабе известную силу , а затем проводим через ее начало и конец прямые, параллельные стерж-ням 1 и 2. Таким путем будут найдены силы и , действующие на стержни 1 и 2. Затем рассматриваем равновесие стержней, сходящихся в узле II. Действие на эти стержни отброшенной части фермы мысленно заменяем силами , , и , направленными вдоль соответствующих стержней; при этом сила нам известна, так как по равенству дей-ствия и противодействия .

Построив из сил, сходящихся в узле II, замкнутый треугольник (начиная с силы ), найдем вели-чины S 3 и S 4 (в данном случае S 4 = 0). Аналогично находятся усилия в остальных стержнях. Соответствующие силовые многоугольники для всех узлов показаны на рис. 24, б. Последний много-угольник (для узла VI) строится для про-верки, так как все входящие в него силы уже найдены.

Из построенных многоугольников, зная масштаб, находим величины всех усилий. Знак усилия в каждом стержне опреде-ляется следующим образом. Мысленно вы-резав узел по сходящимся в нем стержням (например, узел III), прикладываем к обрезам стержней найденные силы (рис. 25); сила, направленная от узла ( на рис. 25), растягивает стержень, а си-ла, направленная к узлу ( и на рис. 25) сжимает его.

Рис.25

Соглас-но принятому условию растягивающим усилиям приписываем знак «+», а сжимающим - знак «-». В рассмотренном примере (pиc. 25) стержни 1, 2, 3, 6, 7, 9 сжаты, а стержни 5, 8 растянуты.



Понравилась статья? Поделитесь ей