Контакты

Принцип работы фазового автофокуса. Разбираемся, как работают разные режимы автофокуса у зеркалок Nikon и Canon

Автофокус, в том числе, и следящий, в сравнении с ручной наводкой резкости, является более предпочтительной настройкой. В руках опытного фотографа автофокус работает намного быстрее, а главное точнее, чем может действовать среднестатистический фотолюбитель. Однако же, автофокус это не такая простая штука, как может показаться на первый взгляд, но так же следует сказать, что это уже достаточно глубокие дебри, в которые заходят далеко не сразу.

Давайте же рассмотрим то, как пользоваться автофокусом, а так же те тонкости, которые позволят эффективно ним управлять и получать максимально возможный результат.

Для начала я рекомендую вам еще раз перечитать страницы инструкции вашего фотоаппарата, которые посвящаются автофокусу - это будет самое лучшее начало. Для нормального восприятия материала вам нужно знать и понимать где находятся и как действуют основные органы управления автофокусом и точками фокусировки.

Режимы автофокуса

Большинство фотоаппаратов, в том числе Canon и Nikon, оборудованы тремя видами режимов: одиночный, следящий и гибридный автофокус.

Покадровый или точечный автофокус

Этот режим предназначается для фотографирования неподвижных сцен, к примеру портрет, пейзаж, натюрморт и т.д. В этом режиме при полунажатии клавиши спуска, объектив начинает фокусироваться на объекте, который располагается в пределах выбранной точки фокусировки. После завершения наведения резкости, работа наводки фокуса блокируется, что позволяет вам изменить композицию кадра (при изменении расстояния до объекта фокус теряется) и сделать кадр.

Разбираясь в данной теме, необходимо понимать, что объектив фокусируется не на объекте съемки, а на определенном расстоянии. Из этого следует очень простой вывод. Если я навожу резкость на объект, который находится на расстоянии пяти метров, то соответственно и все остальные объекты, находящиеся на удалении пять метров попадают в зону резкости. Другими словами, после наведения фокуса и блокировки работы автофокуса, сохраняя расстояние до объекта съемки, я могу крутить камерой как угодно, получая ту композицию, которая мне нужна, при этом, не теряя фокуса.

Такой метод очень хорош в тех случаях, когда расстояние до объекта достаточно велико и измеряется метрами. На близких же расстояниях, особенно при макросъемке, перекомпоновка кадра, которая может повлечь за собой изменение расстояния на несколько сантиметров или миллиметров приводит к заметной потере фокуса, что еще более критично при узкой глубине резкости.

Режим следящего автофокуса

Этот режим еще называют непрерывным, он просто незаменим при фотографировании динамичных объектов – животные, спорт, автогонки и др. До тех пор, пока кнопка спуска находится в полунажатии, автофокус непрерывно работает, тем самым удерживая объект в зоне резкости. Естественно, блокировки автофокуса, как в предыдущем варианте не происходит, что обусловлено постоянным движением механизма объектива, который ловит фокус вслед за движением объекта съемки.

Напрашивается очевидный вывод. В этом режиме съемки вы не можете менять композицию. Это объясняется тем, что автофокус реагирует на объект расположенный перед определенной точкой фокусировки, если вы измените композицию, объект будет потерян и фокусировка будет произведена на что-то другое.

Итак, мы поняли, что такое следящий автофокус, теперь остался последний режим –автоматический или гибридный. Он создан для того, что бы самому решать нужно ли блокировать автофокус или нет. Этот режим, в отличие от других автоматических функций камеры, кажется мне странным и бесполезным, но это мое субъективное мнение, возможно, кто-то и найдет в нем полезность и удобство.

Приоритет спуска или фокуса

Для многих новичков, существование таких настроек покажется удивительным. Но они существуют и не обратить на них внимание, разбирая автофокус, просто не возможно. Первый из приоритетов (спуска) означает, что в момент полного нажатия кнопки спуска, резкость не имеет никакого значения, другими словами, контроль за этим полностью возложен на фотографа. Этот режим стандартно включен для следящего автофокуса.

Приоритет фокуса, означает, что после полного нажатия кнопки спуска должно быть попадание в резкость по определенной или определенным точкам фокусировки. Если такового не будет, то фотоаппарат не позволяет сделать кадр. Этот режим обычно включен при стандартных настройках в режиме одиночного кадра.

Контрастный и фазовый автофокус, какой лучше?

В цифровых камерах производители используют два вида автофокуса, как вы уже поняли из названия, это контрастный и фазовый автофокус. Будет очень хорошо, если мы разберемся в этих понятиях.

Контрастная система автофокуса

Этот способ автофокуса используется в так называемых цифромыльницах и в зеркальных фотоаппаратах, но только при включении функции «Live View». Этот вид автофокуса не требует дополнительных фокусировочных датчиков, так как для наведения фокуса он использует исключительно матрицу фотоаппарата. Картинка, которая поступает с матрицы фотоаппарата, анализируется процессором камеры на наличие изменения контраста. При необходимости более точной наводки на резкость процессор дает команду двигателю слегка изменить положение линз объектива в любом направлении. Если после этой манипуляции контраст изображения уменьшается, то направление движения линз меняется на противоположное. Движение в правильном направлении продолжается до тех пор, пока контраст снова не начнет падать, достигнув этого предела, процессор говорит мотору вернуть линзы к тому шагу, при котором был максимальный контраст. Достигнув этого значения, фокусировка считается законченной.

Как вы понимаете, в силу таких особенностей работы автофокуса (не известно в какую сторону следует вращать двигатель) совершается множество лишних движений. Что приводит к основным минусам этого способа фокусировки – низкая скорость, что не позволяет использовать его на профессиональных камерах. Второй минус, может и не настолько критичный – повышенное энергопотребление.

Плюсами данного способа, является простота конструкции и возможность сфокусироваться практически в любом месте кадра.

Фазовый автофокус

Как вы понимаете, производители фототехники уже давно ответили нам и себе на вопрос, какой автофокус выбрать. Конечно же, победила фазовая система. Разберем, почему так.

Этот вид автофокуса используется в зеркальных цифровых и пленочных камерах. Здесь присутствует небольшое вмешательство в оптическую систему передачи изображения, так кроме основного зеркала, камера оснащается дополнительным зеркалом, которое передает часть света на модуль фазового автофокуса. Любой световой луч, который проходит через светоделительную призму и микролинзы делится на два луча, каждый из которых потом направляется на датчик автофокуса. Если наводка на резкость точна, то лучи падают на датчик в строгом расстоянии друг от друга.

Если же расстояние между лучами меньше эталонного, то фокус наведен ближе, чем нужно (фронт-фокус).

Если же расстояние большее, то соответственно резкость наведена дальше (бэк-фокус).

При этом величина сдвига указывает расстояние от идеального фокуса. Таким образом, процессор сразу же получает данные о том, в какую сторону и насколько необходимо произвести подстройку.

Датчики фазовой системы автофокуса могут быть крестообразными и линейными. Линейные, так же разделяются на вертикальные и горизонтальные. Последние, чувствительны к вертикальным линиям (стволы деревьев, забор), а вертикальные более чувствительны к горизонтальным объектам (горизонт, дорога). Соответственно, крестообразные датчики являются универсальными, они восприимчивы к объектам любой формы. Узнать какие именно датчики и где они расположены вы можете из инструкции к вашему фотоаппарату, но самый чувствительный датчик располагается в центре кадра.

Главным положительным качеством фазового автофокуса является его скорость, которая делает его незаменимым при съемке динамичных сцен. Основными недостатком является сложность, громоздкость, необходимость тончайшей юстировки всех компонентов, меньшая точность, чем у контрастного автофокуса и малое число фокусировочных точек.

Гибридная система

Так же существует и третий вид автофокуса – гибридный. Из названия становится ясно, что это совмещенная система, включающая качества обоих описанных выше систем. Такие автофокусы используются в беззеркальных и некоторых зеркальных камерах.

Суть этой системы заключается в том, что датчики вмонтированы прямо в матрицу. Благодаря этому наводка на резкость происходит по следующей системе. Сначала, базовый фокус наводит фазовый автофокус, а затем на основании полученных данных начинает работать контрастный. При этом медлительность контрастного автофокуса уменьшается более чем на 75%. Фазовый автофокус не требует столь точной юстировки, а вся система занимает намного меньше места.

Разобрав все технические стороны работы автофокуса, хочу в завершение сказать еще пару слов о тех факторах, которые так же влияют на его работу:

Светосила объектива. Здесь все как всегда, чем выше светосила, тем лучше работает автофокус.

Фокусное расстояние. Здесь все достаточно запутано, но если в двух словах, то чем больше фокусное, тем виднее любой промах автофокуса. Кроме этого есть шевеленка, дыхание и прочие факторы. Делаю вывод, чем длиннее фокусное расстояние, тем хуже работает автофокус.

Детализация и освещенность изображения. Чем меньше деталей и света в зоне точки фокусировки, тем хуже работает автофокус.

Сам фотограф , а точнее ваше умение пользоваться своей техникой. Если человек умело обращается, то все работает, если же небрежно и не правильно, то даже самая современная система автофокуса будет промахиваться.

Самое главное в вашей работе с автофокусом – это практика. Правильный взвешенный подход к работе автоматики даст вам возможность быстро и качественно фокусироваться. Что собственно и необходимо.

Успешных вам фотографий!

Система автоматической фокусировки камеры настраивает объектив, чтобы сфокусироваться на объекте и может обеспечить разницу между чётким снимком и упущенной возможностью. Несмотря на кажущуюся очевидность задачи «чёткость в точке фокусировки», скрытая работа, необходимая для фокусировки, к сожалению, далеко не так проста. Данная глава призвана повысить качество ваших снимков, обеспечив понимание принципов работы автофокуса и тем самым позволив вам извлечь максимум из его возможностей и избежать его недостатков.


Примечание: автофокус (AF) работает либо с использованием сенсоров контраста в камере (пассивный AF ), либо посылая сигнал для подсветки или оценки расстояния до объекта (активный AF ). Пассивный AF может осуществляться методами контрастного или фазового детектора, но оба метода для достижения точного автофокуса опираются на контраст; вследствие этого с точки зрения данной главы они считаются качественно идентичными. Если не указано обратное, данная глава рассматривает пассивный автофокус. Мы рассмотрим также метод вспомогательного луча активного AF ближе к концу.

Концепция: сенсоры автофокуса

Сенсор(ы) автофокуса камеры расположены в различных частях поля зрения изображения и являются целой системой, стоящей за достижением чёткого фокуса. Каждый сенсор измеряет относительный фокус по изменениям контраста в соответствующей области изображения, и максимальный контраст считается соответствующим максимальной резкости.

Изменение фокусировки: Размытие Полуфокус Резкость

400%


Гистограмма сенсора

Основы контраста изображений описаны в главе о гистограммах изображений .
Примечание: многие компактные цифровые камеры в качестве сенсора контраста используют собственно сенсор изображения (используя метод, называемый контрастным AF) и необязательно оборудованы несколькими дискретными сенсорами автофокуса (которые чаще встречаются при использовании фазового AF). Диаграмма вверху иллюстрирует контрастный метод AF; метод фазового детектора отличается от него, но тоже основывается на контрасте как критерии автофокуса.

Процесс фокусировки в общих чертах работает следующим образом:

  1. Процессор автофокуса (AFP) незначительно изменяет дистанцию фокусировки.
  2. AFP считывает сенсор AF и оценивает, как и насколько изменился фокус.
  3. Используя информацию из предыдущего шага, AFP настраивает объектив на новую дистанцию фокусировки
  4. AFP последовательно повторяет предыдущие шаги, пока не будет достигнут удовлетворительный фокус.

Весь процесс обычно занимает доли секунды. В сложных случаях камера может не достичь удовлетворительного фокуса и начнёт повторять вышеописанный процесс, что означает отказ автофокуса. Это ужасный случай «охоты за фокусом», когда камера постоянно гоняет фокус вперёд-назад, не достигая фокусировки. Однако, это не значит, что фокусировка на выбранном предмете невозможна. Следующий раздел рассматривает случаи и причины отказа автофокуса.

Факторы, влияющие на автофокус

Предмет съёмки может иметь огромное влияние на степень успешности автофокуса, зачастую даже большее, чем разница между моделями камер, объективов или параметров фокусировки. Три наиболее важных фактора, влияющих на автофокус, - это степень освещённости, контрастность предмета и движение камеры или предмета .

Пример, иллюстрирующий качество различных точек фокуса, показан слева; наведите курсор на изображение, чтобы увидеть преимущества и недостатки каждой из точек фокуса.

Заметьте, что все эти факторы взаимосвязаны; другими словами, автофокус достижим даже на слабо освещённом предмете, если он имеет при этом высокий контраст, и наоборот. Это имеет важные последствия для вашего выбора точки автофокуса: выбор точки фокуса, которая находится на чёткой границе или выраженной текстуре, поможет достичь лучшего автофокуса , при прочих равных условиях.

Пример слева выгодно отличается тем, что точки наилучшего автофокуса совпадают с положением предмета. Следующий пример более проблематичен, поскольку автофокус лучше работает на фоне, чем на предмете. Наведите курсор на изображение внизу, чтобы отметить области хорошей и плохой работы автофокуса.

На снимке справа, если сфокусироваться на быстродвижущихся источниках света за предметом, сам предмет может оказаться вне фокуса, если глубина резкости невелика (как обычно и бывает при съёмке в условиях низкой освещённости наподобие показанных).

Иначе, фокусировка на внешней подсветке предмета, возможно, была бы наилучшим подходом, за вычетом того, что эта подсветка быстро меняет расположение и интенсивность в зависимости от положения движущихся источников света.

Если сфокусировать камеру на внешней подсветке не удаётся, менее контрастной (но более статичной и достаточно хорошо освещённой) точкой фокуса могут быть выбраны ноги модели или листья на земле на одинаковом расстоянии с моделью.

Однако, вышеописанный выбор затрудняется тем, что его зачастую нужно сделать в течение долей секунды. Дополнительные специфические техники автофокусировки для неподвижных и движущихся объектов будут рассмотрены в соответствующих разделах ближе к концу этой главы.

Количество и тип точек автофокуса

Устойчивость и гибкость автофокуса в первую очередь являются результатом числа, положения и типа точек автофокуса, которые доступны в данной модели камеры. Зеркальные камеры высшего класса имеют 45 точек автофокуса и более, тогда как другие камеры могут иметь даже всего лишь одну центральную точку. Два примера расположения сенсоров автофокуса показаны ниже:

На примерах слева и справа приведены камеры Canon 1D MkII и Canon 50D/500D, соответственно.
Для этих камер автофокус невозможен для диафрагм, меньших чем f/8.0 и f/5.6.


Примечание: «вертикальным» сенсор называется только потому, что обнаруживает контраст
вдоль вертикальной линии. Ирония в том, что такой сенсор, как следствие,
наилучшим образом обнаруживает горизонтальные линии.

Для цифровых зеркальных камер количество и точность точек автофокуса может также меняться в зависимости от максимальной диафрагмы используемого объектива, как показано выше. Это важный фактор при выборе объектива: даже если вы не планируете использовать максимальную диафрагму объектива, она тем не менее может помочь камере достичь более высокой точности автофокуса . Далее, поскольку центральный сенсор автофокуса практически всегда наиболее точен, для предметов вне центра зачастую лучше всего сперва использовать этот сенсор для наведения на фокус (перед изменением композиции).

Несколько сенсоров AF могут работать одновременно для повышения надёжности или по отдельности для повышения своеобразия, в зависимости от выбранных параметров настройки камеры. У некоторых камер есть также «АвтоГРИП», вариант для групповых фотографий, который обеспечивает попадание всех точек кластера фокусировки в приемлемую степень фокуса.

Режимы AF: следящий (AI SERVO) или разовый (ONE SHOT)

Наиболее широко поддерживаемым режимом фокусировки камеры является разовый, который наилучшим образом подходит для статичных изображений. Этот режим подвержен ошибкам фокусировки для быстродвижущихся объектов, поскольку не рассчитан на движение, вдобавок он может затруднить отслеживание движущихся объектов видоискателем. Разовая фокусировка требует достижения фокуса, прежде чем снимок может быть сделан.

Многие камеры поддерживают также режим автофокуса, который непрерывно адаптирует дистанцию фокусировки для движущихся объектов. Камеры Canon называют этот режим «AI Servo», а камеры Nikon - «непрерывной» фокусировкой. Следящий режим работает на основе предположения о местоположении объекта в следующий момент времени на основании расчёта скорости движения объекта по данным предыдущих фокусировок. Камера затем фокусируется на предугаданную дистанцию с опережением для учёта скорости спуска (задержки между нажатием спуска и началом экспозиции). Это существенно повышает вероятность правильной фокусировки на движущихся объектах.

Примеры максимальных скоростей слежения показаны для различных камер Canon ниже:

Значения справедливы для идеальных контраста и освещённости при использовании объектива
Canon 300 мм f/2.8 IS L.

Вышеприведенный график можно использовать для приближённого подсчёта возможностей других камер. Действительные предельные скорости слежения зависят также от того, насколько неравномерно движение объекта, контраста и освещённости объекта, типа объектива и количества сенсоров автофокуса, используемых для слежения. Имейте также в виду, что использование следящего фокуса может значительно сократить время жизни батареи вашей камеры, так что применяйте его только при необходимости.

Вспомогательный луч автофокуса

Многие камеры комплектуются вспомогательным лучом AF, видимым или инфракрасным, который применяется в методе активного автофокуса. Это может быть очень полезно в ситуациях, когда объект недостаточно освещён или недостаточно контрастен для автофокуса, хотя использование вспомогательного луча имеет также и свои недостатки, поскольку автофокус в этом случае работает намного медленнее.

В большинстве компактных камер используется встроенный источник инфракрасного света для работы AF, тогда как цифровые зеркальные камеры часто используют встроенную или внешнюю вспышку для подсветки объекта. При использовании вспомогательной вспышки достичь автофокуса может быть затруднительно, если предмет заметно смещается между вспышками. Поэтому использование вспомогательной подсветки рекомендуется только для неподвижных объектов.

На практике: съёмка движения

Автофокус практически всегда будет лучше всего работать при съёмке движения в следящем (AI servo) или непрерывном режиме. Эффективность фокусировки может значительно повыситься при условии, что объективу не нужно осуществлять поиск в большом диапазоне дистанций фокусировки.

Пожалуй, наиболее универсальный способ этого добиться - это предварительно сфокусировать камеру на области, в которой вы ожидаете появления движущегося объекта . На примере с велосипедистом предфокус может быть осуществлён по обочине дороги, поскольку велосипедист наверняка появится поблизости от неё.

На некоторых объективах для зеркальных камер присутствует переключатель минимальной дистанции фокусировки, установка его на предельно возможную дистанцию (ближе которой предмет ни в коем случае не окажется) также повысит эффективность.

Учтите, однако, что в режиме непрерывного автофокуса снимки могут быть сделаны, даже если точная фокусировка ещё не достигнута.

На практике: портреты и другие статичные снимки

Статичные снимки лучше всего снимать в режиме разового фокуса, который гарантирует, что точный фокус был получен до начала экспозиции. Обычные требования к точке фокусировки касательно контраста и освещённости применимы и здесь, но требуется ещё и незначительная подвижность предмета съёмки.

Для портретов наилучшей точкой фокусировки является глаз, поскольку это стандарт и поскольку он обеспечивает хороший контраст. Несмотря на то, что центральный сенсор автофокуса обычно наиболее чувствителен, наиболее точная фокусировка для нецентральных объектов достигается использованием нецентральных точек фокусировки. Если использовать центральную точку фокусировки для фиксации фокуса (и далее изменять композицию), дистанция фокусировки всегда будет несколько меньше действительной, и эта ошибка нарастает с приближением объекта. Точная фокусировка особенно важна для портретов, поскольку они обычно имеют малую глубину резкости .

Поскольку наиболее общеупотребимые сенсоры автофокуса являются вертикальными, может быть уместно побеспокоиться о том, какой контраст преобладает в точке фокусировки, вертикальный или горизонтальный. В условиях малой освещённости порой автофокуса можно достичь, только повернув камеру на 90° на время фокусировки.

На примере слева ступеньки состоят преимущественно из горизонтальных линий. Если фокусироваться на дальней из передних ступенек (в расчёте на получение гиперфокального расстояния), чтобы избежать отказа автофокуса, можно на время фокусировки сориентировать камеру в ландшафтное положение. После фокусировки можно при желании повернуть камеру в портретное положение.

Заметьте, что эта глава рассматривает, как фокусироваться, а не на чём фокусироваться. За дальнейшей информацией по данному вопросу изучите главы о глубине резкости и гиперфокальном расстоянии .

Эволюция мобильного автофокуса:
от контрастного до Dual Pixel
При съёмке на смартфон очень важно, чтобы фотографии получались чёткими. Для этого объект съёмки должен оказаться в фокусе до того, как вы нажмёте на кнопку «Сделать фото». В последнее время целый ряд производителей работает над улучшением технологий автоматической фокусировки, и сегодня мы рассмотрим, чем они отличаются друг от друга.

При выборе камерофона многие уделяют внимание количеству мегапикселей – мол, у кого их больше, тот и круче. Однако зачастую важнее и полезнее взглянуть на другие факторы, которые оказывают не менее серьёзное влияние на качество фотографий. Среди них – тип автофокуса камеры. В эту область сейчас активно устремились Apple, Samsung, LG и другие производители, причём многим действительно удалось значительно продвинуться вперёд.

Что такое автофокус, и почему он нам нужен?

Система автоматической фокусировки настраивает объектив таким образом, чтобы сфокусироваться непосредственно на объекте съёмки, обеспечивая тем самым разницу между чётким снимком и упущенной возможностью.

Упрощённо принцип работы камеры состоит в том, что лучи света отражаются от фотографируемых объектов и затем попадают на сенсор, который преобразует поток фотонов в поток электронов. После этого ток переводится в набор битов, данные обрабатываются и записываются в память камеры. Особой популярностью у производителей смартфонов сейчас пользуются CMOS-сенсоры, которые преобразуют заряд в напряжение прямо в пикселе, обеспечивая впоследствии прямой доступ к содержимому произвольного пикселя.

В теории всё работает так: линзы фокусируют свет на сенсоре, сенсор затем создаёт цифровую фотографию. В реальности же всё происходит не так просто. Угол входящих лучей света зависит от дистанции, на которой находится фотографируемый объект. На диаграмме слева продемонстрированы линзы, фокусирующие световые лучи на голубом объекте: зелёный и красный объекты оказываются не в фокусе и будут размыты на финальном снимке. Если мы хотим сфокусироваться на зелёном или красном объектах, необходимо изменить дистанцию между линзами и сенсором.

На заре камерофоностроения большинство устройств имели фиксированный фокус. В современных же смартфонах предусмотрена возможность регулировать расстояние между линзами и сенсором. Поэтому вы получаете качественные детализированные снимки. Сейчас для реализации автофокуса в смартфонах в основном используют три метода: контрастный, фазовый и лазерный.

Контрастный автофокус

Контрастный автофокус относится к пассивному типу автофокусов. До сих пор это решение применяется в большинстве смартфонов – во многом потому, что оно одно из самых простых. При помощи сенсора происходит замер количества света на объекте, после этого он же перемещает линзу в зависимости от контраста. Если контраст максимальный, то и объект съёмки находится в фокусе.

Вообще, контрастный автофокус вполне неплохо справляется со своей задачей и обладает весомым преимуществом – он довольно прост и не требует какого-то сложного «железа».

Но есть у него и несколько недостатков. В частности, контрастный автофокус работает медленнее остальных – обычно ему требуется около секунды, чтобы сфокусироваться на объекте. За это время вы можете передумать делать снимок, или, допустим, если вы хотели запечатлеть быстро движущийся объект, момент будет упущен. Это происходит из-за того, что львиную долю времени занимает процесс «сдвиг точки фокусировки/линз объектива – оценка контрастности – сдвиг – оценка контрастности». Кроме того, у контрастного автофокуса отсутствует возможность следящей фокусировки, да и в условиях плохого освещения он вряд ли вас впечатлит. Поэтому данный тип автофокусов на сегодняшний день используется преимущественно в бюджетных смартфонах, таких как Lenovo A536 , ASUS Zenfone Go и других.


Фазовый автофокус: быстрая и продвинутая альтернатива

Одним из первопроходцев здесь была компания Samsung, которая позаимствовала технологию у цифровых зеркальных фотокамер и оснастила фазовым автофокусом свой смартфон Galaxy S5. Суть в том, что в данном случае применяются специальные датчики – они ловят проходящий световой поток от разных точек изображения, используя линзы и зеркала. Внутри датчика происходит деление света на две части, каждая из которых попадает на сверхчувствительный сенсор. Расстояние между потоками света измеряется датчиком, после чего он сам определяет, насколько нужно сдвинуть линзу для точной фокусировки. Так, например, Samsung Galaxy S5 требуется всего 0,3 секунды, чтобы сфокусироваться на объекте.

Первое и главное преимущество фазового автофокуса – он намного быстрее контрастного, это просто must have для съёмки движущихся объектов. Кроме того, камера может оценивать движение объекта при помощи датчиков, отсюда получаем возможность следящего автофокуса.

Но есть и минусы. Фазовый автофокус, как и контрастный, не очень хорошо справляется со своими задачами в условиях недостаточного освещения. Также для него необходимо более мощное «железо», поэтому он, как правило, доступен в смартфонах верхнего сегмента. Среди них, например, Huawei Honor 7 , Sony Xperia M5 и Samsung Galaxy Note 5 .

Одни производители пошли дальше и решили использовать в смартфонах лазерный автофокус (об этом чуть позже), другие же активно занялись совершенствованием технологии фазового автофокуса. Так, например, Apple в своём iPhone 6s и iPhone 6s Plus использует так называемые «фокусные пиксели»: суть в том, что технология задействует часть пикселей в качестве фазового сенсора, и съёмка на смартфоны от Apple получается действительно быстрой.

А вот технология Dual Pixel, которую компания Samsung применяет в своих смартфонах Galaxy S7 и Galaxy S7 Edge , действительно отличается от стандартной фазовой фокусировки. Она хоть и является разновидностью фазового автофокуса, но всё же имеет некоторые отличия и тонкости. В смартфонах фазовый автофокус несколько ограничен в возможностях – чтобы присвоить каждому пикселю фокусный сенсор, нужно сильно его уменьшить, отсюда получим шумы и нечёткость фотографий. Обычно датчиками оснащают около 10% светочувствительных точек, некоторые производители, впрочем, не выходят и за рамки 5%.

В Dual Pixel же каждый пиксель оснащён отдельным датчиком из-за увеличения размеров пикселей. Процессор обрабатывает показания каждого пикселя, но делает это настолько быстро, что автофокусировка всё равно занимает десятые доли секунды. В Samsung говорят, что технология Dual Pixel подобна фокусировке при помощи человеческого глаза, но это скорее метафора. Тем не менее надо признать инновационность данного подхода к фазовому автофокусу. Сейчас это настоящий эксклюзив для Galaxy S7 и Galaxy S7 Edge .

Лазерный автофокус: самый активный

Как и фазовый, лазерный автофокус относится к активному типу автофокусов. Этим направлением долгое время занималась компания LG, которая сперва реализовала лазерный автофокус в своём смартфоне G3. В основе работы технологии лежит принцип лазерного дальномера: лазерный излучатель освещает объект, а сенсор замеряет время поступления отражённого лазерного луча, определяя расстояние до объекта.

Одно из главных преимуществ такого автофокуса – время. Как говорят в LG, весь процесс автофокусировки при помощи лазера занимает 0,276 секунды. Значительно быстрее контрастного автофокуса и немного шустрее, чем фазовый.

Очевидный плюс лазерного автофокуса – он невероятно быстрый и хорошо справляется со своими задачами в условиях недостаточного освещения. Но работает он только на определённой дистанции – самый лучший эффект достигается, если расстояние от смартфона до объекта составляет менее 0,6 метра. А после пяти метров – привет, контрастный автофокус.

Мы живем в век скоростей и высоких технологий, когда все спешат и хотят иметь все под рукой. Сегодня мы поговорим о камерах смартфонов, которые способны запечатлеть нужный кадр в нужный момент. А, поскольку мы все хотим, чтобы фотографии получались четкими, нужно кое-что выяснить про оснащение камеры. Последние несколько лет многие производители мобильных аппаратов стараются усовершенствовать технологию автофокусировки, и она заслуживает нашего пристального внимания. Давайте рассмотрим, какие существуют разновидности автоматической фокусировки, а также – какими достоинствами и недостатками обладает каждая из них.

Если коротко остановиться на том, в чем состоит основное различие между фокусом и автофокусом то здесь все просто. В данном случает речь идет о том, когда линза объектива фокусируется на определенном объекте, посредством преломления лучей благодаря чему свет собирается в одной точке. Когда все совпадает, сенсор матрицы находится в нужной точке, кадр получается детализированный и качественный. Когда фотограф фокусируется на главном объекте, настраивая объектив вручную, на фотографии делается акцент на переднем или заднем плане, в то время как остальная часть получается более размытой. Это и есть процесс фокусировки. Сегодня этот процесс значительно облегчен, поскольку за нас все может делать автоматика. Благодаря автофокусировке можно сделать четкие детализированный снимок без лишних усилий – просто наводим и щёлкаем. А, поскольку практически все современные смартфоны оснащены камерами с автоматической фокусировкой, стоит рассмотреть – каких разновидностей она бывает.

Фазовый автофокус

В основе этой технологии лежит дробление луча света, который проходит через объектив, на два потока, после чего свет попадает на светочувствительный сенсор. При этом замеряется расстояние между потоками, которые проходят через противоположные края объектива. Наводка считается окончательной, если разделенные лучи достигнут определенного расстояния, заданного датчиками. Устройство по сути само может определить, как нужно изменить положение линз, чтобы картинка получилась требуемого качества. Неопровержимым достоинством фазового автофокуса считается быстрота и точность фокусировки. Эта особенность очень важна, когда снимается движущаяся сцена. Также стоит отметить, что эта технология срабатывает быстрее, чем контрастный автофокус, о котором читайте ниже.

Тем не менее, автофокус фазового типа имеет некоторые недостатки, одним из которых можно считать сложность реализации. Для того, чтобы эта технология работала, нужна сверхточная физическая юстировка, а также скрупулезная цифровая настройка. Для хорошей реализации фазовой автоматической фокусировки требуется хорошее «железо», которым обладают не все смартфоны. К тому же, точность фазового автофокуса напрямую зависит от диафрагмы объектива, так что при недостаточном освещении эта технология не выдаст желаемого результата.

Контрастный автофокус

Работа этой технологии основана на применении специальных светочувствительных элементов, которые производят оценку контрастности кадра. Фокусировка в этом случае считается точной, когда картинка приобретает максимальную точность и контрастность по сравнению с фоном. Это решение используется в подавляющем большинстве смартфонов главным образом за счет сравнительной простоты в реализации технологии. Специальный сенсор замеряет количество света на объективе, после чего этот же сенсор должен переместить линзу пока не будет достигнут максимальный контраст. Когда достигнут максимальный контраст, значит снимаемый объект находится в фокусе. Еще раз отметим простоту использования данной технологии, для которой не требуется сложная аппаратная начинка.

Теперь добавим ложку дёгтя в эту бочку мёда, отметив некоторые недостатки, которые присущи технологии контрастного автофокуса. Сразу скажем, что это решение срабатывает несколько медленнее прочих технологий. Думает контрастный автофокус где-то в пределах секунды, в течении которой он фокусируется на снимаемом объекте. Если вы человек медлительный и никуда не спешите, то в принципе время, потраченное на фокусировку вас не будет напрягать или раздражать. Особенно, если снимаемый объект тоже никуда не спешит, улитка, например. Но, если вы двигаетесь со сверхскоростью, как супергерой Флэш, то секунда растянется для вас на целую вечность. Если вы хотели запечатлеть колибри с ее суперметаболизмом, то она за это время может просто улететь. Скорость в этой технологии страдает в основном из-за того, что оценка контрастности происходит в несколько этапов, для чего требуется некоторое время. Кроме того, контрастный автофокус лишен такой возможности, как следящая фокусировка, в сумерках или с плохой освещенностью качество фотографий вряд ли кого-то удовлетворит. Отметим, что технология контрастного автофокуса как правило применяется в смартфонах бюджетного уровня.

Лазерный автофокус

Данная технология работает за счет применения принципа лазерного дальномера, когда в функцию лазерного излучателя входит освещение снимаемого объекта, в то время как сенсор осуществляет замер расстояния до объекта с фиксацией времени, в течении которого поступает отраженный лазерный луч. Киллер фичей этой технологии можно считать затраченное время для фокусировки. В частности, лазерный автофокус способен справиться с этой задачей за 0,276 секунды. Вы уже конечно поняли, что фазовый и контрастный автофокус «нервно курят в сторонке».

Лазерный автофокус молниеносно быстрый и отлично себя зарекомендовал в условиях недостаточной освещенности. Однако, в работе с этим решением следует учитывать одну деталь – самый хороший результат можно достигнуть, только при расстоянии до снимаемого объекта в пределах 0,6 метров. А, если расстояние до объекта превышает 5 метров, то лазерный автофокус в данном случае бессилен. В таком случае вам светит только контрастный автофокус.

Если произвести разбор полётов, отметим, что при выборе смартфона в целом, а также его фотовозможностей в частности, каждый руководствуется собственными соображениями и предпочтениями. Не последнюю роль в выборе играет бюджет, который предполагается потратить. Более того, если вы фанат качественных фотографий, то камера в смартфоне в любом случае вас не удовлетворит, в таком случае нужно просто купить зеркалку.

Первые десятилетия фотографии камеры были большими и представляли собой простую, но громоздкую конструкцию в виде «гармошки», соединяющей объектив и кассетную часть с фотопластинкой. Перед съемкой на место фотопластинки вставлялось матовое стекло (фокусировочный экран), и фотограф вручную двигал объектив (обычно однолинзовый) для фокусировки изображения, накрывшись темным покрывалом для повышения яркости и контраста. Процесс этот был небыстрый, но и спешить особо было некуда: светочувствительность фотопластинок в то время была низкой, выдержка составляла минуты, так что снимали в основном статичные сцены — пейзажи, натюрморты и портреты людей, которым приходилось для этого сидеть неподвижно.

Ручная работа

К началу XX века чувствительность фотоматериалов увеличилась, формат уменьшился, камеры стали намного компактнее и удобнее, но сфокусировать объектив по изображению на маленьком фокусировочном экране стало сложно даже с помощью лупы. Эту проблему можно было решить несколькими путями. Во‑первых, сфокусировать объектив на гиперфокальном расстоянии, так, чтобы большая часть объектов в кадре изображалась резко. Во‑вторых, разметить шкалу расстояний на объективе и наводить резкость, выставляя нужные значения «на глаз». И, в-третьих, можно было применить принципиально новое решение, оснастив камеры устройством для измерения дистанции — дальномером. Этот несложный оптический прибор состоял из светоделительной призмы и поворотного зеркала, разнесенных на определенное расстояние (база). Фотограф, глядя в окошко дальномера, поворачивал зеркало до тех пор, пока изображения не совмещались. С помощью триангуляции, исходя из угла поворота и базы, можно было найти расстояние до объекта съемки и выставить эту дистанцию на объективе (вручную). Такими устройствами камеры начали оснащать с начала XX века, а в 1916 году в модели 3A Autographic Kodak Special конструкторы впервые механически объединили измерение расстояния с одновременной фокусировкой объектива. Настоящую популярность это приспособление получило благодаря компании Leica, которая начала снабжать свои камеры дальномерами начиная с модели Leica I (1925), — собственно, такие камеры и стали называться дальномерными.


Убрать раздвоение

В 1976 году на выставке Photokina компания Leica представила фотокамеру с системой Correfot (которую она разрабатывала с 1960 года) — первой системой автофокусировки в мире. По одной из легенд, несмотря на интерес публики, компания отказалась от ее выпуска, «потому что клиенты уже знают, как правильно фокусировать объектив». На самом деле система была просто слишком прожорлива (комплекта из шести батареек хватало менее чем на час съемок) и в целом «сырая». Поэтому первой серийной автофокусной камерой стала в 1977 году Konica C 35 AF, оснащенная системой Visitronic компании Honeywell. Система эта базировалась на классическом дальномере и триангуляции, только два изображения сводил вместе не сам фотограф, а электромеханическая автоматика, сравнивая сигналы с двух ПЗС-матриц.


Компания Canon пошла немного другим путем, решив обойтись без сложной электромеханики. В Canon AF35M (1977) появился активный автофокус, представлявший собой оптоэлектронную версию классического дальномера: светодиод излучал инфракрасный импульс, а расстояние определялось по углу его отражения от объекта, измеренного с помощью ПЗС-датчика. В следующей модели, Canon AF35ML (1981), уже использовалась пассивная автофокусировка, основанная на «твердотельной триангуляции»: никаких движущихся частей, а «сведение» изображений осуществлялось электронным способом — по разности сигналов на двух ПЗС-матрицах.


В первых дальномерных камерах фотограф совмещал изображения, считывал расстояние и выставлял полученное значение на фокусировочной шкале объектива. В камере 3A Autographic Kodak Special эти процедуры были объединены в одну.

Сдвиг по фазе

Первой автофокусной зеркальной камерой стала Minolta Maxxum 7000 (1985). В этой модели использовалась система фазовой автофокусировки (AF) через объектив (Through The Lens — TTL), которая широко применяется и сейчас. Принцип ее работы основан на том, что лучи, проходящие через две половины объектива, отражаются зеркалом и фокусируются в двух разных точках на датчике АФ — двух ПЗС-линейках. Расстояние между этими точками для идеальной фокусировки точно известно, и если измеренная дистанция между пиками не совпадает с этим значением, система управления начинает двигать объектив в нужном направлении до тех пор, пока пики не окажутся на нужных местах. В реальной жизни, конечно, все намного сложнее — изображение представляет собой не точку, может быть расположено не на оптической оси и т. п. Эти проблемы решаются введением различных масок и дополнительных конденсорных линз, но принцип тот же.


Автоматические дальномеры и настоящая АФ Konica C35 AF была оснащена электромеханическим дальномером с двумя ПЗС-датчиками. Сигналы с датчиков сравнивались, их совпадение означало точную фокусировку.

Фазовый автофокус очень быстрый (система сразу знает, в каком направлении нужно двигать объектив, и благодаря этому даже может отслеживать движение объекта в кадре), не требует большой вычислительной мощности и не имеет движущихся частей. Основной недостаток этой системы — ее неуверенная работа при низком освещении, а также то, что она работает только при опущенном зеркале: в момент съемки зеркало поднимается, и весь свет через объектив попадает на пленку или матрицу, а не на датчик АF. А значит, эта система не годится для тех случаев, когда кадр визируется по ЖК-экрану (LiveView), то есть для большинства компактных цифровых камер и смартфонов.


А первая настоящая АФ появилась в камере Minolta Maxxum 7000. Это была полноценная система фазовой автофокусировки через объектив (TTL) — предок всех современных фазовых систем АФ.

По образу и подобию

Для цифровых камер, которые с начала 2000-х заменили пленочные, пришлось придумывать новый принцип автофокусировки. Ну, не совсем новый. Как человек наводит объектив вручную? Крутит кольцо фокусировки, пока наблюдаемая картинка не станет резкой, то есть максимально контрастной. Контрастный автофокус работает точно так же: двигает объектив, добиваясь максимальной контрастности картинки на светочувствительной матрице.


Такая система работает с основной матрицей и не требует сложных оптических схем и дополнительных датчиков. Но, в отличие от фазовой автофокусировки, она не может определить заранее, в какую сторону следует двигать объектив, и начинает это делать в случайном направлении — точно так, как это делал бы человек. Поэтому скорость фокусировки иногда оставляет желать лучшего — особенно в условиях недостаточного освещения или при съемке малоконтрастных объектов, когда система просто не может «рассмотреть» резкие детали (в точности как человек). Тем не менее долгое время для компактных цифровых камер и особенно смартфонов альтернатив контрастной автофокусировке просто не существовало.


Камера Canon EOS 70D стала первой моделью, оснащенной системой типа Dual Pixel CMOS AF. В отличие от гибридной системы АФ, которая использует специальные выделенные фотодиоды на общей КМОП-матрице, АФ с «двойными пикселями» и для фокусировки, и для фотосъемки задействует все фотодиоды матрицы.

Гибридный подход

В 2010 году компания Fujifilm выпустила камеру FinePix F300EXR с новой, гибридной системой автофокусировки. На матрице камеры, помимо обычных светочувствительных фотодиодов (пикселей), были равномерно разбросаны два типа специализированных — «правые» и «левые», то есть воспринимающие свет только от правой или левой части объектива (другая часть закрыта непрозрачной маской). Система АF сравнивала изображение на субматрицах, образованных «левыми» и «правыми» пикселями. Точное совпадение этих двух изображений говорит о точной фокусировке, а смещение показывает, насколько и в какую сторону следует сместить объектив. Похоже на фазовую АF, не так ли? Почти, но не совсем: разрешающая способность субматриц существенно меньше, чем всей матрицы, и при очень малых отклонениях от точной фокусировки система неспособна увидеть разницу, так что на финальном этапе используется фокусировка по контрасту.


Ничего лишнего

Гибридный автофокус выгодно сочетает достоинства фазовой и контрастной систем АF, однако имеет и недостатки. Для улучшения работы АФ нужно увеличить количество пикселей, которые «работают» только на 50%, а это приводит к уменьшению общей светочувствительности матрицы. Но разработчики матриц придумали остроумный способ обойти это ограничение.

В 2013 году в камере Canon EOS 70D была впервые опробована система Dual Pixel CMOS AF. А в 2016 году на рынке появился первый смартфон с камерой, оснащенной системой Dual Pixel, — флагман Samsung Galaxy S7.


Существует способ сделать так, чтобы «всё было резко» вовсе без автофокусировки. В эпоху пленочных камер дешевые модели обычно снабжались простым объективом с фиксированной фокусировкой (focus-free) на гиперфокальном расстоянии. Такой объектив позволяет более-менее резко изображать все объекты, находящиеся на расстоянии от половины гиперфокального (обычно 0,5−1 м) до бесконечности. Подобными же объективами снабжались и дешевые цифровые камеры, и первые смартфоны с камерами. Однако этот принцип применим только для дешевых широкоугольных объективов с большим минимальным значением диафрагмы. Другой случай — это использование пленоптической камеры, или «камеры светового поля». Она фиксирует не только распределение освещенности в фокальной плоскости, но и направление пришедших лучей (световое поле). Такое изображение можно позднее «перефокусировать» любым нужным образом (в любой плоскости). Идея подобных камер была выдвинута в 1908 году, а несколько лет назад компания Lytro решила производить цифровые версии, хотя особого распространения они пока не получили.

Каждый пиксель матрицы Dual Pixel состоит из двух отдельных фотодиодов — «правого» и «левого». Таким образом, при автофокусировке вся матрица делится на две субматрицы, «правую» и «левую», с таким же разрешением, как и основная матрица. Сравнение сигналов с двух половинок обеспечивает точность выше, чем у гибридных, а скорость гораздо выше, чем у контрастных систем АF (скажем, в Samsung Galaxy S7 время фокусировки составляет менее 0,2 с). Поскольку Dual Pixel является фазовой системой АF, она позволяет отслеживать движение объекта в кадре. А в момент съемки обе субматрицы работают как единое целое, не происходит никакого падения светочувствительности, что важно для смартфонов с их небольшими матрицами. Поэтому такая система на сегодняшний день представляет собой вершину эволюции систем АF. Конечно, до тех пор, пока инженеры опять не придумают что-нибудь новое.


Сонары, радары и лидары

Отдельную ветку на эволюционном древе автофокусировки занимают внешние (относительно оптической системы камеры) дальномеры с прямым измерением расстояния. Одной из первых фотокамер с системой автофокусировки стала модель Polaroid SX-70 Sonar OneStep (1978), оснащенная, как понятно из ее названия, дальномером на основе ультразвукового сонара. Архаика? Вовсе нет, сонарные дальномеры для камер существуют и сейчас. Их выпускает, например, компания RedRockMicro — правда, не для автоматической, а для дистанционной ручной фокусировки профессиональных камер. Более новый принцип определения расстояния, лазерная локация, сейчас активно используется не только в строительной и военной технике, но и в некоторых смартфонах (LG G3) — в дополнение к обычной системе контрастной автофокусировки. В патентах Sony упоминается радарная автофокусировка, но серийных образцов подобного типа на рынке не представлено.

Редакция благодарит Markus Kohlpayntner за помощь в подготовке статьи.



Понравилась статья? Поделитесь ей