Контакты

Как доказать что одна сторона параллельна другой. Параллельные прямые на плоскости и в пространстве

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Они не пересекаются, сколько бы их ни продолжали. Параллельность прямых на письме обозначают так: AB || С E

Возможность существования таких прямых доказывается теоремой.

Теорема.

Через всякую точку, взятую вне данной прямой, можно провести параллельную этой прямой .

Пусть AB данная прямая и С какая-нибудь точка, взятая вне ее. Требуется доказать, что через С можно провести прямую, параллельную AB . Опустим на AB из точки С перпендикуляр С D и затем проведем С E ^ С D , что возможно. Прямая CE параллельна AB .

Для доказательства допустим противное, т.е., что CE пересекается с AB в некоторой точке M . Тогда из точки M к прямой С D мы имели бы два различных перпендикуляра M D и , что невозможно. Значит, CE не может пересечься с AB , т.е. С E параллельна AB .

Следствие.

Два перпендикуляра (С E и DB ) к одной прямой (С D ) параллельны.

Аксиома параллельных линий.

Через одну и ту же точку нельзя провести двух различных прямых, параллельных одной и той же прямой.

Так, если прямая С D , проведенная через точку С параллельна прямой AB , то всякая другая прямая С E , проведенная через ту же точку С , не может быть параллельна AB , т.е. она при продолжении пересечется с AB .

Доказательство этой не вполне очевидной истины оказывается невозможным. Ее принимают без доказательства, как необходимое допущение (postulatum).

Следствия.

1. Если прямая (С E ) пересекается с одной из параллельных (СВ ), то она пересекается и с другой (AB ), потому что в противном случае через одну и ту же точку С проходили бы две различные прямые, параллельные AB , что невозможно.

2. Если каждая из двух прямых (A и B ) параллельны одной и той же третьей прямой (С ) , то они параллельны между собой.

Действительно, если предположить, что A и B пересекаются в некоторой точке M , то тогда через эту точку проходили бы две различные прямые, параллельные С , что невозможно.

Теорема .

Если прямая перпендикулярна к одной из параллельных прямых, то она перпендикулярна и к другой параллельной .

Пусть AB || С D и EF ^ AB .Требуется доказать, что EF ^ С D .

Перпендикуляр E F , пересекаясь с AB , непременно пересечет и С D . Пусть точка пересечения будет H .

Предположим теперь, что С D не перпендикулярна к EH . Тогда какая-нибудь другая прямая, например HK , будет перпендикулярна к EH и, следовательно через одну и ту же точку H будут проходить две прямые параллельные AB : одна С D , по условию, а другая HK по доказанному раньше. Так как это невозможно, то нельзя допустить, что СВ была не перпендикулярна к EH .

Инструкция

Перед началом доказательства убедитесь, что прямые лежат в одной плоскости и их можно изобразить на ней. Наиболее простым способом доказательства является метод измерения линейкой. Для этого при помощи линейки измерьте расстояние между прямыми в нескольких местах как можно дальше друг от друга. Если расстояние остается неизменным, данные прямые параллельны. Но такой метод недостаточно точен, поэтому лучше используйте другие способы.

Проведите третью прямую, так, чтобы она пересекала обе параллельные прямые. Она образует с ними четыре внешних и четыре внутренних угла. Рассмотрите внутренние углы. Те, которые лежат через секущую прямую называются накрестлежащими. Те, что лежат по одной стороне называются односторонними. При помощи транспортира измерьте два внутренних накрестлежащих угла. Если они равны между собой, то прямые будут параллельными. Если остались сомнения, измерьте односторонние внутренние углы и сложите получившиеся значения. Прямые будут параллельными, если сумма односторонних внутренних углов будет равна 180º.

Если нет транспортира, возьмите угольник с углом 90º. С его помощью постройте перпендикуляр к одной из прямых. После этого продолжите этот перпендикуляр таким образом, чтобы он пересек другую прямую. С помощью того же угольника проверьте, под каким углом этот перпендикуляр пересекает ее. Если этот угол тоже равен 90º, то прямые параллельны между собой.

В том случае, если прямые заданы в декартовой системе координат, найдите их направляющие или нормальные векторы. Если эти векторы, соответственно, между собой коллинеарны, то прямые параллельны. Приведите уравнение прямых к общему виду и найдите координаты нормального вектора каждой из прямых. Его координаты равны коэффициентам А и В. В том случае, если отношение соответствующих координат нормальных векторов одинаково, они коллинеарны, а прямые параллельны.

Например, прямые заданы уравнениями 4х-2у+1=0 и х/1=(у-4)/2. Первое уравнение – общего вида, второе – канонического. Приведите второе уравнение к общему виду. Используйте для этого правило преобразования пропорций, в результате получите 2х=у-4. После приведения к общему виду получите 2х-у+4=0. Поскольку уравнение общего вида для любой прямой записывается Ах+Ву+С=0, то для первой прямой: А=4, В=2, а для второй прямой А=2, В=1. Для первой прямой координаты нормального вектора (4;2), а для второй – (2;1). Найдите отношение соответствующих координат нормальных векторов 4/2=2 и 2/1=2. Эти числа равны, а значит вектора коллинеарны. Поскольку вектора коллинеарны, прямые параллельны.

В этой статье мы расскажем о параллельных прямых, дадим определения, обозначим признаки и условия параллельности. Для наглядности теоретического материала будем использовать иллюстрации и решение типовых примеров.

Yandex.RTB R-A-339285-1 Определение 1

Параллельные прямые на плоскости – две прямые на плоскости, не имеющие общих точек.

Определение 2

Параллельные прямые в трехмерном пространстве – две прямые в трехмерном пространстве, лежащие в одной плоскости и не имеющие общих точек.

Необходимо обратить внимание, что для определения параллельных прямых в пространстве крайне важно уточнение «лежащие в одной плоскости»: две прямые в трехмерном пространстве, не имеющие общих точек и не лежащие в одной плоскости, являются не параллельными, а скрещивающимися.

Чтобы обозначить параллельность прямых, общепринято использовать символ ∥ . Т.е., если заданные прямые a и b параллельны, кратко записать это условие нужно так: a ‖ b . Словесно параллельность прямых обозначается следующим образом: прямые a и b параллельны, или прямая а параллельна прямой b , или прямая b параллельна прямой а.

Сформулируем утверждение, играющее важную роль в изучаемой теме.

Аксиома

Через точку, не принадлежащую заданной прямой проходит единственная прямая, параллельная заданной. Это утверждение невозможно доказать на базе известных аксиом планиметрии.

В случае, когда речь идет о пространстве, верна теорема:

Теорема 1

Через любую точку пространства, не принадлежащую заданной прямой, будет проходить единственная прямая, параллельная заданной.

Эту теорему просто доказать на базе вышеуказанной аксиомы (программа геометрии 10 - 11 классов).

Признак параллельности есть достаточное условие, при выполнении которого гарантирована параллельность прямых. Иначе говоря, выполнения этого условия достаточно, чтобы подтвердить факт параллельности.

В том числе, имеют место необходимые и достаточные условия параллельности прямых на плоскости и в пространстве. Поясним: необходимое – значит то условие, выполнение которого необходимо для параллельности прямых; если оно не выполнено – прямые не являются параллельными.

Резюмируя, необходимое и достаточное условие параллельности прямых – такое условие, соблюдение которого необходимо и достаточно, чтобы прямые были параллельны между собой. С одной стороны, это признак параллельности, с другой – свойство, присущее параллельным прямым.

Перед тем, как дать точную формулировку необходимого и достаточного условия, напомним еще несколько дополнительных понятий.

Определение 3

Секущая прямая – прямая, пересекающая каждую из двух заданных несовпадающих прямых.

Пересекая две прямые, секущая образует восемь неразвернутых углов. Чтобы сформулировать необходимое и достаточное условие, будем использовать такие типы углов, как накрест лежащие, соответственные и односторонние. Продемонстрируем их на иллюстрации:

Теорема 2

Если две прямые на плоскости пересекаются секущей, то для параллельности заданных прямых необходимо и достаточно, чтобы накрест лежащие углы были равными, либо были равными соответственные углы, либо сумма односторонних углов была равна 180 градусам.

Проиллюстрируем графически необходимое и достаточное условие параллельности прямых на плоскости:

Доказательство указанных условий присутствует в программе геометрии за 7 - 9 классы.

В общем, эти условия применимы и для трехмерного пространства при том, что две прямые и секущая принадлежат одной плоскости.

Укажем еще несколько теорем, часто используемых при доказательстве факта параллельности прямых.

Теорема 3

На плоскости две прямые, параллельные третьей, параллельны между собой. Этот признак доказывается на основе аксиомы параллельности, указанной выше.

Теорема 4

В трехмерном пространстве две прямые, параллельные третьей, параллельны между собой.

Доказательство признака изучается в программе геометрии 10 класса.

Дадим иллюстрацию указанных теорем:

Укажем еще одну пару теорем, являющихся доказательством параллельности прямых.

Теорема 5

На плоскости две прямые, перпендикулярные третьей, параллельны между собой.

Сформулируем аналогичное для трехмерного пространства.

Теорема 6

В трехмерном пространстве две прямые, перпендикулярные третьей, параллельны между собой.

Проиллюстрируем:

Все указанные выше теоремы, признаки и условия позволяют удобно доказать параллельность прямых методами геометрии. Т.е., чтобы привести доказательство параллельности прямых, можно показать, что равны соответственные углы, или продемонстрировать факт, что две заданные прямые перпендикулярны третьей и т.д. Но отметим, что зачастую для доказательства параллельности прямых на плоскости или в трехмерном пространстве удобнее использовать метод координат.

Параллельность прямых в прямоугольной системе координат

В заданной прямоугольной системе координат прямая определяется уравнением прямой на плоскости одного из возможных видов. Так и прямой линии, заданной в прямоугольной системе координат в трехмерном пространстве, соответствуют некоторые уравнения прямой в пространстве.

Запишем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от типа уравнения, описывающего заданные прямые.

Начнем с условия параллельности прямых на плоскости. Оно базируется на определениях направляющего вектора прямой и нормального вектора прямой на плоскости.

Теорема 7

Чтобы на плоскости две несовпадающие прямые были параллельны, необходимо и достаточно, чтобы направляющие векторы заданных прямых были коллинеарными, или были коллинеарными нормальные векторы заданных прямых, или направляющий вектор одной прямой был перпендикулярен нормальному вектору другой прямой.

Становится очевидно, что условие параллельности прямых на плоскости базируется на условии коллинеарности векторов или условию перпендикулярности двух векторов. Т.е., если a → = (a x , a y) и b → = (b x , b y) являются направляющими векторами прямых a и b ;

и n b → = (n b x , n b y) являются нормальными векторами прямых a и b , то указанное выше необходимое и достаточное условие запишем так: a → = t · b → ⇔ a x = t · b x a y = t · b y или n a → = t · n b → ⇔ n a x = t · n b x n a y = t · n b y или a → , n b → = 0 ⇔ a x · n b x + a y · n b y = 0 , где t – некоторое действительное число. Координаты направляющих или прямых векторов определяются по заданным уравнениям прямых. Рассмотрим основные примеры.

  1. Прямая a в прямоугольной системе координат определяется общим уравнением прямой: A 1 x + B 1 y + C 1 = 0 ; прямая b - A 2 x + B 2 y + C 2 = 0 . Тогда нормальные векторы заданных прямых будут иметь координаты (А 1 , В 1) и (А 2 , В 2) соответственно. Условие параллельности запишем так:

A 1 = t · A 2 B 1 = t · B 2

  1. Прямая a описывается уравнением прямой с угловым коэффициентом вида y = k 1 x + b 1 . Прямая b - y = k 2 x + b 2 . Тогда нормальные векторы заданных прямых будут иметь координаты (k 1 , - 1) и (k 2 , - 1) соответственно, а условие параллельности запишем так:

k 1 = t · k 2 - 1 = t · (- 1) ⇔ k 1 = t · k 2 t = 1 ⇔ k 1 = k 2

Таким образом, если параллельные прямые на плоскости в прямоугольной системе координат задаются уравнениями с угловыми коэффициентами, то угловые коэффициенты заданных прямых будут равны. И верно обратное утверждение: если несовпадающие прямые на плоскости в прямоугольной системе координат определяются уравнениями прямой с одинаковыми угловыми коэффициентами, то эти заданные прямые параллельны.

  1. Прямые a и b в прямоугольной системе координат заданы каноническими уравнениями прямой на плоскости: x - x 1 a x = y - y 1 a y и x - x 2 b x = y - y 2 b y или параметрическими уравнениями прямой на плоскости: x = x 1 + λ · a x y = y 1 + λ · a y и x = x 2 + λ · b x y = y 2 + λ · b y .

Тогда направляющие векторы заданных прямых будут: a x , a y и b x , b y соответственно, а условие параллельности запишем так:

a x = t · b x a y = t · b y

Разберем примеры.

Пример 1

Заданы две прямые: 2 x - 3 y + 1 = 0 и x 1 2 + y 5 = 1 . Необходимо определить, параллельны ли они.

Решение

Запишем уравнение прямой в отрезках в виде общего уравнения:

x 1 2 + y 5 = 1 ⇔ 2 x + 1 5 y - 1 = 0

Мы видим, что n a → = (2 , - 3) - нормальный вектор прямой 2 x - 3 y + 1 = 0 , а n b → = 2 , 1 5 - нормальный вектор прямой x 1 2 + y 5 = 1 .

Полученные векторы не являются коллинеарными, т.к. не существует такого значения t , при котором будет верно равенство:

2 = t · 2 - 3 = t · 1 5 ⇔ t = 1 - 3 = t · 1 5 ⇔ t = 1 - 3 = 1 5

Таким образом, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, а значит заданные прямые не параллельны.

Ответ: заданные прямые не параллельны.

Пример 2

Заданы прямые y = 2 x + 1 и x 1 = y - 4 2 . Параллельны ли они?

Решение

Преобразуем каноническое уравнение прямой x 1 = y - 4 2 к уравнению прямой с угловым коэффициентом:

x 1 = y - 4 2 ⇔ 1 · (y - 4) = 2 x ⇔ y = 2 x + 4

Мы видим, что уравнения прямых y = 2 x + 1 и y = 2 x + 4 не являются одинаковыми (если бы было иначе, прямые были бы совпадающими) и угловые коэффициенты прямых равны, а значит заданные прямые являются параллельными.

Попробуем решить задачу иначе. Сначала проверим, совпадают ли заданные прямые. Используем любую точку прямой y = 2 x + 1 , например, (0 , 1) , координаты этой точки не отвечают уравнению прямой x 1 = y - 4 2 , а значит прямые не совпадают.

Следующим шагом определим выполнение условия параллельности заданных прямых.

Нормальный вектор прямой y = 2 x + 1 это вектор n a → = (2 , - 1) , а направляющий вектором второй заданной прямой является b → = (1 , 2) . Скалярное произведение этих векторов равно нулю:

n a → , b → = 2 · 1 + (- 1) · 2 = 0

Таким образом, векторы перпендикулярны: это демонстрирует нам выполнение необходимого и достаточного условия параллельности исходных прямых. Т.е. заданные прямые параллельны.

Ответ: данные прямые параллельны.

Для доказательства параллельности прямых в прямоугольной системе координат трехмерного пространства используется следующее необходимое и достаточное условие.

Теорема 8

Чтобы две несовпадающие прямые в трехмерном пространстве были параллельны, необходимо и достаточно, чтобы направляюще векторы этих прямых были коллинеарными.

Т.е. при заданных уравнениях прямых в трехмерном пространстве ответ на вопрос: параллельны они или нет, находится при помощи определения координат направляющих векторов заданных прямых, а также проверки условия их коллинеарности. Иначе говоря, если a → = (a x , a y , a z) и b → = (b x , b y , b z) являются направляющими векторами прямых a и b соответственно, то для того, чтобы они были параллельны, необходимо существование такого действительного числа t , чтобы выполнялось равенство:

a → = t · b → ⇔ a x = t · b x a y = t · b y a z = t · b z

Пример 3

Заданы прямые x 1 = y - 2 0 = z + 1 - 3 и x = 2 + 2 λ y = 1 z = - 3 - 6 λ . Необходимо доказать параллельность этих прямых.

Решение

Условиями задачи заданы канонические уравнения одной прямой в пространстве и параметрические уравнения другой прямой в пространстве. Направляющие векторы a → и b → заданных прямых имеют координаты: (1 , 0 , - 3) и (2 , 0 , - 6) .

1 = t · 2 0 = t · 0 - 3 = t · - 6 ⇔ t = 1 2 , то a → = 1 2 · b → .

Следовательно, необходимое и достаточное условие параллельности прямых в пространстве выполнено.

Ответ: параллельность заданных прямых доказана.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Параллельные прямые - прямые, лежащие в одной плоскости и не имеющие общих точек. Другими словами это прямые, которые никогда не пересекутся. Примеров параллельности в нашем мире масса: это и железнодорожные рельсы, и струны на гитаре, и провода высоковольтной линии. Этот список можно продолжать бесконечно. При производстве некоторых деталей очень важно соблюдение параллельности, поэтому и нам будет полезно знать как доказать что отрезки параллельны.

Некоторые могут возмутиться: "Как можно доказывать параллельность отрезков, если известны только признаки параллельности прямых?" Ответ на этот вопрос очень прост: любой отрезок можно продлить с обеих сторон, с сохранением направления, тем самым получить прямую. Затем доказать параллельность уже полученных прямых, а из неё последует параллельность отрезков. Доказательство параллельности прямых похоже на то, как найти ординату середины отрезка - выполняется в одно или два действия и под силу любому школьнику.

Первое, самое простое и наглядное доказательство - с помощью прямоугольного треугольника провести перпендикулярную прямую к одной из прямой. Если проведённая прямая будет перпендикулярна и ко второй прямой - то эти прямые параллельны. Перпендикулярность можно проверить, приложив прямой угол к мету пересечения прямой и секущей. Зная как разделить отрезок пополам, можно соединить их концы и середины. Если получатся параллельные прямые - то исходные отрезки параллельны.

Классическим доказательством является проверка выполнения условия следующей теоремы:"Если при пересечении двух прямых секущей сумма односторонних углов равна 180 градусов, то прямые параллельны." Но для этого необходимо обзавестись транспортиром, проводить точные измерения и не допускать ошибок. Для тех кто знает как построить отрезок равный данному, существует более закрученный способ доказательства.

Необходимо построить такой отрезок, чтобы его начало совпадало с началом первого отрезка, а конец с концом другого. Далее следует построить отрезок равный данному и проверить, подходит ли он для того, чтобы соединить конец первого с началом второго. Если данное условие выполняется, то отрезки параллельны. Обязательно нужно учесть то, что этот способ работает только для параллельных и равных по длине отрезков.

Подобно тому, как найти корни принадлежащие отрезку, можно доказать параллельность отрезков через вспомогательную прямую или отрезок. Необходимо знать следующую теорему: две прямые, которые обе параллельны третей, параллельны и между собой. Способ хорош для тех случаев, когда нельзя проводить секущую или нет транспортира.



Понравилась статья? Поделитесь ей