Контакты

Засоление почв. Засоление почвы: ищем причину

Засолением почвы называют избыточное скопле­ние в корнеобитаемом слое электролитных (растворенных или поглощенных) солей, которые угнетают или губят сельскохо­зяйственные растения, снижают качество и количество урожая.

Естественное засоление почв характерно для территорий с аридным климатом. Оно происходит в результате подтягивания солей к поверхностным слоям почвы из грунтовых вод и коренных отложений при восходящем движении влаги. Влага по мере вертикально восходящего движения испаряется, а содержащаяся в ней соль откладывается на стенках порового пространства почв. Высоким природным засолением обладают почвы пустынь и полупустынь. Больше засолены почвы, образующиеся на коренных породах с высоким природным засолением и при неглубоком (менее 3 м от поверхности земли) залегании грунтовых засоленных вод

Засоление почв происходит на той стадии орошения, когда соленые грунтовые воды поднимаются на глубину 1–3 м от поверхности земли и транспирация растительностью и испарение приближается к величине испарения с открытой поверхности воды (в аридных районах оно достигает 1000- 1500 мм в год). При минерализации таких вод 2-3 г/дм3 в верхний слой почвы за лето привносится около 20 т/га солей.

Степень вредности главнейших воднорастворимых солей для растений (по Л. П. Розову) представлена в следующей таблице:

Таблица 14

NaCl Na 2 SO 4 Na 2 CO 3
MgCl 2 Mg SO 4 Mg CO 3
CaCl 2 Ca SO 4 Ca CO 3

Все соли, расположенные выше черты, вредны для растений. Размеры вредного содержания солей в почве зависят от вида и возраста растений, свойств почвы и количества влаги в почве, т. е. от концентрации почвенного раствора, интенсивности испарения влаги почвой, сочетания солей и др. Поэтому в разных условиях размеры вредного содержания солей и степень солеустойчивости одного и того же растения различны.

Таблица 15

Основные соли, участвующие в засолении почв

Формула Минерал Хим. название Описание некоторых свойств
CaCO 3 Кальцит, арогонит, ватерит Карбонат кальция В связи с малой растворимостью CaCO 3 безвреден для большинства растений, карбонатные горизонты часто сильно сцементрированны и трудно проницаемы для корней растений
MgCO 3 магнезит Карбонат магния Растворы MgCO 3 обладают высокой щелочностью, что угнетает растение
Na 2 CO 3 · 1OH 2 O Нахколиттрона, нитрит, терманатрит Карбонат натрия Крайне токсичен для растений из-за высокой растворимости(178 г/л) и высокой щелочности раствора (pH 10-15)
K 2 CO 3 Поташ Карбонат калия Токсичен для большинства растений
CaSO 4 ·2H 2 O CaSO 4 Гипс, селенит, алебастр, ангидрит Сульфат кальция Не оказывает отрицательного действия на растения в связи с низкой растворимостью (1,9 г/л). Высокая концентрация гипса способствует образованию сплошной губчатой массы, непроницаемой для воды, воздуха и корней растений, что приводит к угнетению растений и их гибели.
MgSO 4 ·7H 2 O эпсомит Сульфат магния Обладает высокой растворимостью (252 г/л) и характеризуется крайне высокой токсичностью для растений
Na 2 SO 4 Na 2 SO 4 ·1OH 2 O Тенардит, мирабилит Сульфат натрия Токсичность в 2-3 раза ниже по сравнению с MgSO 4
NaCl галит Хлорид натрия Одно из распространенных и токсичных веществ засоленных почв из-за физиологической активности и высокой растворимости (264г/л)
KCl Сильвин, карналлит Хлорид калия В засоленных почвах концентрация KCl редко достигает значений, при которых проявляется его токсичное действие
MgCl 2 бишофит Хлорид магния Вследствие высокой растворимости (353 г/л) обладает высокой токсичностью

Вредное действие солей на растения очень сильно зависит от концентрации их в поч­венном растворе, а так же от вида самого растения. Все растения можно разделить на 3 группы: неустойчивые, среднеустойчивые, устойчивые

Таблица 16

Агрономическая солеустойчивость растений

неустойчивые среднеустоичивые устойчивые
Полевые культуры
фасоль Рожь, пшеница, сорго, кукуруза, подсолнечник, рис, лён, соя, бобы конские, горох Ячмень, сахарная свекла, рапс, хлопок
Овощные культуры
Редис, сельдерей Томат, перец, капуста, морковь, салат-латук, лук, тыква, огурец Свекла столовая, спаржа шпинат, капуста листовая
Кормовые травы
Клевер ползучий, лисо - хвост, клевер гибридный, клевер луговой, кровохлёбка маленькая Донник белый, жёлтый, индийский, кострец, канареечник клубненосный, волоснец безостый, клевер земляничный, суданская трава, люцерна, овсяница луговая, кострец безостый Бескильница, бермудская трава, пырей высокий, кострец, волоснец канадский, пырей американский, овсяница высокая
Плодовые
Груша, яблоня, грейпфрут, лимон, апельсин, миндаль, абрикос, персик, слива Гранат, инжир, оливковое дерево, виноград Финиковая пальма
Кустарники
Калина, роза, фейхоа можевельник Олевндр, лисохвост

Выносливость различных растений к содержанию солей в почве можно ориентировочно характеризовать цифрами, приведенными в таблице.

Таблица 17

Данные таблицы относятся к смеси хлористых и сернокислых солей в верхнем 1,5 метровом слое почвы. При наличии соды все цифры должны быть снижены, так как содержание соды допустимо в количестве не больше 0,0005%.

Способность растений переносить то или иное количество растворимых солей зависит от почвенных и климатических условий; она уменьшается на тяжелых глинистых и суглинистых почвах и в сухих и жарких условиях и увеличивается на легких песчаных и супесчаных почвах и во влажных условиях: органическое вещество в почве увеличивает устойчивость растений к солям.

Вредное действие солей на растения очень сильно зависит от концентрации их в поч­венном растворе.

Для обоснования мелиораций и выбора мелиоративных приемов учитываются:

1. Свойства почв – содержание обменного натрия, степень засоления, солевой баланс почв, глубина залегания карбонатов кальция и гипса, уровень и минерализация грунтовых вод.

2. Климатические условия – количество выпадающих осадков.

3. Специфика сельскохозяйственного использования – пашня, сенокос, пастбище, садовый или плодовый участок.

Способы удаления солей из профиля засоленных почв

Механический способ удаления солей – сгребание солевой корки солончаков или сильнозасоленных почв тракторными скребками с последующей ее транспортировкой за пределы орошаемого массива. Он применяется в основном на сильнозасоленных почвах перед промывками, что способствует сокращению расхода промывных вод на рассоление.

Промывка почвы – комплекс мероприятий, обеспечивающий снижение избыточной концентрации токсичных солей в почве до допустимого для сельскохозяйственных культур предела, путем подачи на поверхность почвы воды и удаления раствора солей за счет дренажа за пределы промывной территории. Промывка заключается в заполнении порового пространства промывной водой для последующего удаления легкорастворимых солей за пределы почвенного профиля за счет их перевода в почвенный раствор, создание гравитационной или напорной фильтрации, промывной воды. Для промывки почв рассчитывается промывная норма. Она зависит от физико-химических свойств почвы (тип почвы, степень засоления, гидрохимические и фильтрационные свойства).

Промывная норма (нетто) – объем воды, необходимый для удаления избытка токсичных солей из расчетного слоя. Рассчитывается по аналитическим зависимостям или по моделям влагосолепереноса с использованием соответствующих компьютерных программ. Наиболее проста и удобна формула В. Р. Волобуева:

M w НТ= 10000 h П s⋅α′⋅C s

где MwHT – промывная норма; ά – показатель солеотдачи; hПs – расчетная глубина легкорастворимых солей при полном насыщении порового пространства почвы, г/л, (%); Сs*доп – допустимая концентрация почвенного раствора, г/л, (%).

Значение параметра ά меняется в зависимости от гранулометрического состава и типа засоления: суглинистые почвы ά = 0,92–1,98; тяжелосуглинистые почвы ά = 1,22–1,78; глинистые почвы ά = 1,80–3,30. Большие значения характерны для сульфатного типа засоления.

Капитальные промывки являются единовременным мелиоративным мероприятием по рассолению почв на расчетную глубину.

Эксплуатационные промывки являются периодическим мелиоративным мероприятием для регулирования водно-солевого режима почв.

Поверхностная промывка – удаление солей из корнеобитаемых горизонтов тяжелых почв с низкой водопроницаемостью, высокой влагоемкостью и высоким содержанием солей

Сквозная промывка всей толщи горизонтов почвенного профиля обеспечивает вынос водорастворимых солей в грунтовый поток и их удаление естественным или искусственным дре- нажем за пределы орошаемого массива. При сквозной промывке возможно опреснение не только почвенной толщи, почвообразующих и подстилающих пород, но и поверхностных слоев грунтовых вод. Поэтому только сквозные промывки на фоне горизонтального, вертикального или комбинированного дренажа могут обеспечить создание условий, исключающих повторное засоление почв

Запашка солей применяется на слабозасоленных почвах, когда нижние горизонты свободны от солей, а их незначительно повышенные концентрации сосредоточены в поверхностных горизонтах профиля. Перепашка при относительно мощном гумусном горизонте создает условия для равномерного разбавления солей в мелкоземе пахотного горизонта до уровня концентраций, не препятствующих нормальному росту и развитию сельскохозяйственных растений.

Электромелиорация – действие постоянного электрического тока на почву. Результаты применения электромелиорации: рассоление, трансформация солевого состава в сторону улучшения его с мелиоративной точки зрения, уменьшение сильнотоксичных компонентов, усиливаются процессы микро- и макроагрегации. При электромелиорации значительно сокращаются промывные нормы воды, процесс почвообразования изменяется в сторону зонального типа, повышается уровень плодородия почв и продуктивность растений

При пропускании тока через водонасыщенную почву или грунт происходят электролиз, электроосмос и электрофорез.

При электролизе влажных почв около электродов и в межэлектродном пространстве происходят сложные электрохимические процессы, в результате которых изменяется твердая фаза почвы. Подщелачивание у катода и подкисление у анода увели- чивает растворимость многих соединений.

Электроосмос – движение воды в направлении катода при действии постоянного электрического тока. Применяется для дренажа почвогрунтов при закладке фундаментов для сооружений.

Электрофорез – перенос мелких иловатых частиц в направлении электродов.

Термический пар – улучшение физических свойств солонцеватого горизонта под действием солнечной радиации. В результате отвальной вспашки солонцовый горизонт выворачивается на поверхность, по возможности разрыхляется и в течение жаркого летнего периода подвергается воздействию солнца и ветра. Происходит дегидратация и необратимая коагуляция почвенных коллоидов, в результате чего улучшаются физические свойства солонцового горизонта. Термический пар применим для улучшения свойств солонцеватых почв и солонцов сухостепной и полупустынной зон только при малом количестве осадков, высоких и резко колеблющихся температурах.

Глубокое мелиоративное рыхление – глубокое мелиоративное безотвальное рыхление солонцов и солонцеватых почв, особенно после внесения гипса.

В результате глубокого рыхления в почве происходят следующие изменения:

а) разрушается уплотненный солонцовый горизонт, создается мощный корнеобитаемый пахотный слой;

б) в пахотный слой переходят кальциевые соли самой почвы;

в) улучшаются водно-физические свойства почвы, увеличивается запас воды в почве, и удаляются вредные соли, образовавшиеся в результате реакции обмена.

Фитомелиорация – использование растений для рассоления почв. Ее целесообразно использовать совместно с агротехническими и инженерными приемами улучшения мелиоративного состояния низкоплодородных почв.

Землевание искусственное создание мощного 6–20 см плодородного пахотного горизонта на поверхности солонца или сильносолонцовой почвы путем наслаивания богатой обменным кальцием и органическим веществом черноземной почвы на солонец. В этом случае внесенный активный кальций чернозема активно вытесняет обменный натрий из солонца и погашает его токсичность. Землевание сопровождается внесением удобрений, особенно органических, посевом сидератов и другими мероприятиями.

Самомелиораци я – это перемешивание с помощью плантажной вспашки гипсовых и карбонатных горизонтов; рассолонцевание на глубину, на которую происходит промачивание. Приемы, ускоряюе самомелиорацию почвы: промывание почвы, искусственное орошение, улучшение дренажа, хорошая обработка почвы, внесение рыхлящих веществ (навоза, соломы, торфа, компоста и др.); увеличение концентрации кальция в почвенном растворе (внесение гипса, суперфосфата, известковой селитры); повышение растворимости углекислого кальция в карбонатном солонце; возделывание растений на солонцах.

Химическая мелиорация – деятельность, обеспечивающая целенаправленное улучшение агрохимических и воднофизических свойств, а также пищевого режима почв. В результате происходит коренное улучшение химического состава и структуры почв, повышение их плодородия, предотвращение или ослабление негативных последствий интенсификации агро- номического производства на основе применения мелиорантов, орошения и осушения, приводящих к негативным последствиям. Химическая мелиорация направлена на регулирование реакции почвенной среды, ее кислотности и щелочности, оструктуривания почвы.

При химической мелиорации почв изменяются: солевой и микроагрегатный состав почв, гумусное состояние, ионообменные и коллоидно-химические свойства.

Химические мелиоранты – химические вещества, применяемые для улучшения качества и свойств почвы. В качестве химических мелиорантов могут использоваться:

а) химические вещества для регулирования кислотности, щелочности почвы, ее оструктуривания и обогащения элемента- ми питания растений;

б) химические вещества, применяемые для уменьшения плотности и соленакопления, повышения водопроницаемости почвы, стабилизации гумуса и борьбы с эрозией;

в) химические препараты специального назначения (синтетические продукты или химически измененные природные материалы).

Приемы мелиорации

Известкование – применяется на кислых почвах с применением извести, доломитовой муки, сланцевой золы, цементной пыли, известкового туфа, сапропеля, озерной извести

Гипсование – вытеснение поглощенного натрия кальцием гипса или иного кальцийсодержащего соединения как наиболее благоприятным для жизни растений поглощенным катионом.

почваNa2 + CaSO4 → почваCa + Na2SO4

Гипсование применяется в основном на почвах с глубоким залеганием карбонатов и сульфатов кальция (ниже 0,4 м).

В качестве мелиорантов используют гипс, фосфогипс, естественные гипсовые породы (например, гажу). Положительный мелиоративный эффект дает внесение в почву органического вещества, железного купороса, серы и других соединений, способных при биохимическом окислении образовывать серную кислоту.

Гипсование должно сопровождаться удалением из почвы продуктов обмена (Na2SO4) путем хорошего увлажнения и дренированности, что лучше всего осуществляется при мелиорации солонцов в условиях орошения.

Кислование – внесение кислых химических веществ (серная кислота, сульфат железа, сульфат алюминия, хлористый кальций, фосфогипс).

Реакция взаимодействия карбонатного солонца с серной кислотой идет по схеме:

H2SO4 + CaCO3 → H2CO3 + CaSO4.

Образовавшийся гипс, в свою очередь, вытесняет обменный натрий по схеме:

Почва Na2 + CaSO4 → почва Ca + Na2SO4

Внесение тонкоизмельченной серы, которая окисляется серобактериями до серной кислоты, по схеме:

S + 3O + H2O → H2SO4

Затем серная кислота реагирует с карбонатами, образуя гипс, согласно вышеприведенной схеме.

Почвоукрепительные агрохимические мелиорации – мероприятия, направленные на уменьшение плотности почв и соленакопления, повышения водоотдачи и водопроницаемости, стабилизации почвенной структуры, закрепления гумуса, и снижения проблемы эрозии. Наиболее распространенные мелиоранты: жидкий аммиак, мочевиноформальдегидные конденсаты, поли- комплексы, ПАВ.

Удобрительные мелиорации – направлены на повышение гумусного состояния почвы, улучшение водно-воздушного ре- жимов почв. В качестве мелиорантов используют: навоз, птичий помет, зеленую массу растений, торф, сапропель, отходы деревообрабатывающей, гидролизной, пищевой, биохимической и других видов промышленности.

Фосфоритование почв – внесение заправочных доз удобрений, содержащих фосфор в усвояемой растениями форме (суперфосфат, термофосфат, фосфорная мука).

Промывка засоленных почв

Удаление избыточных солей на сильнозасоленных почвах производится путем промывки этих почв, т. е. растворения водой содержащихся в активном слое почвы солей и удаления (вымыва) их из этого слоя в нижние гори­зонты – при глубоком залегании грунтовых вод, или же в дрены и водоприемники – при близком залегании грунтовых вод и слабом оттоке их.

Эффективность промывки засоленных почв зависит от физических свойств их и от степени солонцеватости почв, т. е. соотношения в составе их растворимых солей ионов Са и Na. Засоленные почвы с преобладанием ионов Са (солончаковые) могут быть промыты от содержащихся в них солей сравнительно легко, если только почвы достаточно водопроницаемы. Солон­цеватые почвы с преобладанием ионов Na не могут быть улучшены одной промывкой и требуют предварительной химизации их, чтобы заместить поглощенный Na кальцием, получить при этом продукт обмена (Nа 2 SO 4 и др.), который может быть вымыт; иначе почва будет содержать поглощен­ный Nа и иметь щелочную реакцию и неблагоприятные физические свой­ства. Промывка засоленных почв без химизации может применяться на почвах, содержащих не больше 10% поглощенного Nа. При промывке нужно возможно более полное удаление поглощенного Nа.

Отчуждение земель

Почвенный покров агроэкосистем необратимо нарушается при отчуждении земель для нужд несельскохозяйственного пользования: строительства промышленных объектов, городов, поселков, для прокладки линейно-протяженных систем (дорог, трубопроводов., линий связи), при открытой разработке месторождений полезных ископаемых и т. д. По данным ООН, в мире только при строительстве городов и дорог ежегодно безвозвратно теряется более 300 тыс. га пахотных земель. Конечно, эти потери в связи с развитием цивилизации неизбежны, однако они должны быть сокращены до минимума.

(Эколгия СК – сборник)

Значительно снижает плодородие почв их засоление - повышение содержания легкорастворимых солей. Оно может быть вызвано, например, привнесением солей грунтовыми и поверхностными водами. Наиболее часто засоление вызывается нерациональной системой орошения земель. Почвы считаются засоленными при содержании в них более 0,1% по массе солей, токсичных для растений. Высок процент засоления почв районов древнего орошаемого земледелия: в долине Нила засолено более 80% земель, в долине реки Инд - около 67%. Засолению почвы на больших площадях способствует строительство водохранилищ, вызывающее повышение уровня грунтовых вод.

Естественное засоление почв характерно для территорий с аридным климатом. Оно происходит в результате подтягивания солей к поверхностным слоям почвы из грунтовых вод и коренных отложений при восходящем движении влаги. Влага по мере вертикально восходящего движения испаряется, а содержащаяся в ней соль откладывается на стенках перового пространства почв. Высоким природным засолением обладают почвы пустынь и полупустынь. Больше засолены почвы, образующиеся на коренных породах с высоким природным засолением и при неглубоком (менее 3 м от поверхности земли) залегании грунтовых засоленных вод.

В естественных условиях процесс идет медленно, но он существенно усиливается (вторичное засоление) и становится настоящим бедствием при орошаемом земледелии. Как показал многолетний опыт орошения земель Средней Азии, Заволжья и Нижнего Дона, орошаемое земледелие вызывает целый комплекс «болезней» почв: выщелачивание, разрушение структуры, засоление, осолонцевание, заболачивание и в итоге полнейшую деградацию и уничтожение.

Засоленные почвы классифицируют по химизму, по степени и генезису засоления, по глубине залегания солевых горизонтов.

По химизму засоление бывает сульфатное, хлоридно-сульфатное, сульфатно-хлоридное и хлоридное. Химизм засоления определяется составом анионов и катионов. В наименование типа засоления включают те анионы, содержание которых превышает 20% суммы анионов. Преобладающий анион в названии ставят на последнее место. Содержание анионов СО3 в расчет не включается, так как С03 входит в общую щелочность.



Солончаки и солончаковые почвы непригодны для сельскохозяйственного использования без предварительных промывок. Соли на этих почвах губительно действуют на всходы.

В высокосолончаковатых и солончаковатых почвах соли не препятствуют всходам, но угнетают взрослые растения.

Глубокосолончаковатые и глубокозасоленные почвы используют в богаре под любые культуры, но при орошении на этих почвах может произойти вторичное засоление корнеобитаемого слоя почвы.

По генезису засоление почвы делят на реликтовое (остаток прошлых эпох) и современное соленакопление.

Предупреждение засоления орошаемых земель. Вторичное засоление почвы происходит тем интенсивнее, чем выше засоленность воды, чем больше испарение и чем продолжительнее процесс испарения. Испарение засоленной воды тем больше, чем ближе к поверхности земли залегают грунтовые воды. При глубоком залегании грунтовых вод вторичного засоления обычно не происходит. Поэтому строительные, эксплуатационные и агротехнические мероприятия по борьбе с вторичным засолением направлены на предотвращение подъема уровня грунтовых вод, а при высоком их стоянии - на понижение их уровня и уменьшение испарения грунтовой воды.

К строительным мероприятиям относятся: борьба с потерями воды на фильтрацию (лотковая и трубчатая сеть, облицовка каналов и др.); оснащение оросительной сети всеми необходимыми гидротехническими сооружениями; автоматизация и телемеханизация водного распределения; применение наиболее рациональной техники полива, исключающей питание грунтовых вод; размещение рисовых полей со сбросной сетью в самых низких местах; недопущение затопления орошаемых земель паводковыми водами, а также поверхностных и грунтовых вод с вышележащих водосборов; устройство оградительных дамб, нагорных и ловчих каналов, дрен, сбросной сети.

К эксплуатационным мероприятиям относятся: строгое выполнение плана водопользования системы при круглосуточном поливе, нормирование водоподачи во все каналы, соблюдение поливных и промывных норм, ограничение работы каналов в осеннее и зимнее время, повышение КПД оросительной системы применением комплекса мероприятий.

К агротехническим мероприятиям относятся: посев многолетних трав; содержание почвы в рыхлом состоянии (глубокая зяблевая пахота, предпосевное боронование и культивация, рыхление почвенной корки после поливов), что уменьшает испарение воды, улучшает водный, воздушный и солевой режимы почвы; внесение в почву органических удобрений (навоз, компост); гипсование солонцеватых почв; содержание почвы в затененном состоянии под растительным покровом; выращивание лесных полос, которые улучшают микроклимат, снижают испарение воды с поверхности почвы и действуют как биологический дренаж.

Результат действия предупредительных мер на орошаемых землях оценивается по снижению (или повышению) уровня грунтовых вод и в конечном итоге по повышению урожая сельскохозяйственных культур.

Засоленные почвы и солоди.

В семиаридных и аридных областях различных географических поясов и зон локально распространены почвы, относящиеся к отделу галоморфных, генезис и свойства которых обусловлены процессами засоления и рассоления, – это солончаки солонцы и солоди.

Засоленными называются почвы, содержащие в своем профиле легкорастворимые соли в токсичных для сельскохозяйственных растений количествах . К ним относятся солончаки, солончаковатые почвы и солонцы. Они широко распространены в семиаридных и аридных областях суббореального, субтропического и тропического поясов и даже в бореальном поясе.

О количестве и составе водорастворимых соединений в почвах судят по данным анализов водных вытяжек. В водной вытяжке определяют плотный остаток, прокаленный остаток, водорастворимый гумус, а также анионы и катионы: CO 3 2‑ , HCO 3 ‑ , Cl ‑ , SO 4 2‑ , Mg 2+ , Ca 2+ , Na + . Результаты анализов выражаются в процентах и в милли-эквивалентах (м-экв) к абсолютно сухой почве, или в эквивалент-процентах от массы прокаленного остатка. Величины сухого и прокаленного остатков позволяют судить об общем содержании легкорастворимых солей в почве, соотношении растворимых минеральных и органических соединений и о распределении их по профилю. Засоленными считаются почвы, содержащие легкорастворимые соли в количестве > 0,25% от массы почвы.Почвы, в которых количество легкорастворимых солей составляет от 0,25 до 1% относят к солончаковатым. В солончаках величина легкорастворимых солей не опускается ниже 1% ни в одном из горизонтов почвенного профиля, иногда достигая 15% и более. Солончаковый процесс может проявляться в любом типе почв, если есть источник поступления легкорастворимых солей и условия, способствующие их накоплению.

По глубине залегания солевых горизонтов (положение верхней границы, см) в солончаковых почвах выделяются следующие виды:

Солончаковые 0 – 30;

Солончаковатые 30 – 80;

Глубокосолончаковатые 80 – 150;

Глубокозасоленные > 150.

По степени засоления солончаковатые почвы делятся на виды в соответствии с величиной плотного остатка, который зависит от химизма засоления

· Цифры в скобках соответствуют степени засоления по сумме солей в гипсоносных горизонтах почв, к которым отнесены почвы, содержащие более 1% CaSO 4 . 2H 2 O.

Степень токсичности солей определяется их составом и растворимостью.Токсичность солей возрастает от сульфатного к содовому типу засоления. Особенно ядовита сода, менее токсичен сернокислый натрий. Сернокислый кальций безвреден, но он является спутником других солей, поэтому большое его содержание служит показателем низкого плодородия почвы.

Источниками легкорастворимых солей являются:

1. Засоленные почвообразующие породы . При выветривании таких пород образуется большое количество легкорастворимых солей. Ежегодный приток легкорастворимых солей с суши в океан составляет 2735 млн. т. Около 1 млрд. т солей каждый год поступает в бессточные области материков земного шара (Ковда,1946).

2. Засоленные грунтовые воды . Неглубокое залегание минерализованных грунтовых вод в условиях засушливого климата приводит к засолению почв и грунтов. Эти воды играют важную роль в перераспределении легкорастворимых солей в почвенном профиле.

3. Выход на дневную поверхность морских соленосных осадков , обусловленный либо тектоническими процессами, либо антропогенными воздействиями, приводящими к аридизации суши.

4. Импульверизация эоловый перенос солей ветром . Этот процесс широко развит в районах распространения соленых озер, морей, засоленных почв. При переносе ветром на поверхность суши может поступать от 2 до 20 т солей на 1 км 2 .

5. Извержение вулканов . При извержении вулканов выделяются газы и пары, содержащие серу, хлор, которые в дальнейшем переходят в сульфаты и хлориды.

6. Аккумуляция солей в растениях. Полыни, кермек, перекати-поле, и другие растения накапливают большие количества растворимых солей, которые с опадом поступают в почву.

7. Атмосферные осадки. С атмосферными осадками в почвы может поступать от 20до 30 мг/л солей.

8. Вторичное засоление. Характерно для районов орошаемого земледелия при поливе минерализованными водами, либо при неоправданно высоких поливных нормах. При высоких нормах полива повышается уровень грунтовых вод и, если они минерализованы, то легкорастворимые соли достигают пределов почвенного профиля, и происходит вторичное засоление.

Солончаки.

Солончаки (S-Cs,q) формируются в условиях, когда поступление легкорастворимых солей в поверхностный горизонт почвы не компенсируется их выносом.

Накопление солей реализуется при выпотном или периодически выпотном типе водного режима при близко залегающих засоленных грунтовых водах в условиях аридного или полуаридного климата.

Близкое залегание грунтовых вод приводит к развитию процессов оглеения в нижней части почвенного профиля.

Растительность солончаков специфична и легко может служить индикатором засоления. Это солерос, сарсазан, шведка, некоторые виды лебеды. На солончаках с очень высокой степенью засоления растительность сильно изрежена и представлена различными видами солянок. Размеры фитомассы и, соответственно, гумусонакопление в солончаках находятся в обратной зависимости от количества и токсичности присутствующих в профиле солей. На сильно засоленных почвахвысшая растительность отсутствует, встречаются лишь некоторые виды водорослей (например, диатомовые), гумусовый горизонт не формируется.

Главным диагностическим признаком солончаков является поверхностный солончаковый (солевой) горизонт. Он характеризуется наличием в верхних 20 см легкорастворимых солей в количестве не менее 1% от массы (по данным водной вытяжки), что исключает развитие большинства растений, кроме галофитов, не образующих сомкнутого покрова.

В зависимости от состава солей внешний вид и свойства поверхности почвы различаются. Сульфаты магния и натрия, кристаллизуясь, присоединяют большое количество воды и увеличиваются в объеме. При таком типе засоления образуются солончаки пухлые , имеющие с поверхности пухлую корочку. Малогигроскопичный хлорид натрия дает на поверхности сухую хрупкую корочку («корковые» солончаки ), а сильногигроскопичный хлорид кальция никогда не просыхает («мокрые» солончаки).

Наличие в составе солей соды приводит к формированию черных солончаков, т к. в щелочной среде гуминовые вещества становятся подвижными и прокрашивают почву.



В значительном количестве соли присутствуют по всему профилю солончаков, часто без заметных видимых выделений. Одновременно с накоплением солей может наблюдаmься оглеение.

Морфологически профиль солончаков слабо дифференцирован и имеет следующее строение: S-Cs,q

S (S; S), темно-серую (S}

Понравилась статья? Поделитесь ей