Контакты

Участок плазменной резки. Технология и преимущества плазменной резки металла. Ручная газовая и плазменная резка металла, что лучше

Одним из популярных видов обработки металла является его резка. Существует множество способов получить требуемую форму из цельного листа, но в этом материале рассмотрим принцип работы плазменной резки.

Плазменная резка. Фактически – золотая середина. Преимущества резки металла плазмой сочетают в себе все перечисленные технологии. Главное достоинство – нет ограничений по типу обрабатываемого материала. Разве что по толщине.

  • алюминиевые сплавы 120 мм
  • медные сплавы 80 мм
  • сталь 50 мм
  • чугун 90 мм

Оборудование бывает разное – от промышленного до бытового, так что технология доступна всем. Рассмотрим ее подробнее.

Плазменная резка металла – принцип работы

В качестве резца выступает двухкомпонентная среда:

  • Электрическая дуга, работающая по классической схеме – разряд между катодом и анодом. Причем в качестве анода может выступать сам материал, если он является проводником.
  • Газовая дуга. Нагреваясь под воздействием электрической дуги (температура достигает 25000º С), газ ионизируется и превращается в проводник электротока.

Принцип работы плазменной резки подробно показан в этом видео.

В результате образуется плазма, которая подается под высоким давлением в зону реза. Эта раскаленная струя газа буквально испаряет металл, причем только в рабочей зоне. Несмотря на то, что температура плазменной резки измеряется десятками тысяч градусов, воздействия на пограничную зону практически нет.

Важно! Правильно выбранная скорость, позволяет получить очень узкий разрез без повреждения края материала.

Источник плазменной резки – плазмотрон.


Его задача зажечь дугу, поддерживать рабочую температуру, и выдуть из зоны реза расплавленный металл. Поскольку плазморезы предназначены для обработки любых твердых материалов, включая диэлектрики – образование электрической дуги производится двумя способами:


На рисунке а) изображены резак прямого действия. Катодный узел (8) вместе с закрепленным катодом (6) являются одним из электродов. В качестве второго электрода (анода) выступает обрабатываемая деталь (4) – металл, обладающий хорошей электропроводимостью.

К нему подводится питающий кабель плазмотрона. Наконечник плазменной резки (5) в данной схеме выполняет роль корпуса. От отделен от катода изолятором (7) . Газ подается внутрь по штуцеру (1) и формирует струю плазмы, состоящую из электрической (2) и газовой (3) дуги .

Резка металлов необходима во множестве технологических процессов. Почти всегда механическая обработка начинается с раскраивания и резки материала. Одним из наиболее удобных и экономичных способов является плазменная резка металла. Она позволяет получать заготовки любой формы, которые почти не требуют последующей обработки.

Принцип работы

Для плазменной резки металла применяется воздействие струёй плазмы на заготовку. Плазма - это поток ионизированного газа, разогретого до температуры в тысячи градусов, который обладает электропроводностью и движется с большой скоростью. Формирование плазменной дуги из электрической производится аппаратом плазморез. Принцип работы плазмореза и этапы технологического процесса резки:

  • Формируется дежурная электрическая дуга, которая зажигается между электродом плазмореза и его соплом или обрабатываемым металлом.
  • После формирования дежурной дуги в камеру подаётся сжатый газ. Он расширяется в объёме и разогревается до температуры 20000 °C.
  • Электрическая дуга ионизирует газ, он становится проводником электричества и превращается в струю плазмы. Эта струя разогревает металл в зоне обработки, расплавляет его и производит резку.

Для металлов и неметаллических материалов применяются разные принципы газоплазменной резки. Имеются два способа обработки материалов:

  • Дуга горит между плазмотроном и изделием. Так работает резак прямого действия. Изделие при этом должно быть токопроводящим. Если требуется разрезать неметаллические изделия, применяется косвенный метод.
  • Дуга зажигается в самом плазмотроне между электродом и соплом. Электрод является катодом, а на сопло подаётся положительный потенциал.

Во втором случае обработке могут подвергаться любые материалы: пластмассы, камень, бетон. Потенциал к детали не подводится и электропроводность не требуется.

Оборудование для резки плазмой

Для резки металла плазмой выпускаются аппараты промышленного и бытового назначения. Все агрегаты для резки плазмой имеют в своём составе:

  • источник питания;
  • плазмотрон;
  • компрессор для нагнетания сжатого газа;
  • кабели и шланги, служащие для соединения элементов оборудования.

Источник питания может представлять собой инвертор или трансформатор. Инверторные агрегаты лёгкие, экономичные, обладают высоким коэффициентом полезного действия. Их часто применяют в небольших производствах. Имеют ограничение по силе тока - 70 А, способны резать материал только небольшой толщины до 30 мм.

Трансформаторные устройства более мощные, имеют больший вес и размеры. Они более устойчивы к перепадам напряжений, способны к долгой непрерывной работе и часто используются в станках с ЧПУ. Оборудование с системой водяного охлаждения способно резать металл толщиной до 100 мм. Источники питания для резки с применением кислорода имеют силу тока в диапазоне 100-400 А. При использовании азота, как плазмообразующего газа, этот диапазон увеличивается до 600 А.

Плазмотрон - это основной узел всех установок. В его состав входит:

  • внутренний электрод;
  • рабочее сопло;
  • изолирующий корпус с охлаждением;
  • устройство подачи плазмообразующего вещества.

В зависимости от условий обработки применяют разные газы для плазменной резки. Для сталей и сплавов применяют кислород и воздух. Воздушно-плазменная резка используется для обработки низколегированных сталей. При обработке цветных металлов плазмообразующими газами могут быть аргон, азот, водород. Это обусловлено тем, что в среде кислорода цветные металлы начинают окисляться. Смесь аргона с водородом чаще используется для резки нержавеющей стали и алюминия.

Температура потока газа находится в пределах 5000-30000 °C. При нижних значениях температур обрабатываются цветные металлы, при верхних - тугоплавкие стали.

Скорость потока находится в пределах 500-1500 м/с. Настройка производится в зависимости от толщины, характеристик обрабатываемого материала и длительности работы.

Обработка в ручном режиме

Перед началом работы инвертор или трансформатор подключают к сети переменного тока. Обрабатываемую деталь подсоединяют к источнику питания. Следующий этап - сближение сопла и заготовки. Между ними должно оставаться 40 мм. После этого можно зажигать дежурную дугу. Когда дуга загорается, в сопло подаётся воздушный поток, который ионизируется и формирует струю плазмы.

При работах с плазморезом необходимо соблюдать правила техники безопасности. Нужно использовать специальный костюм и защитный лицевой щиток. Температуры при плазморезке достигают тысяч градусов, и для человека это может быть опасно. Поэтому надо стремиться автоматизировать процесс.

Достоинства и недостатки плазменной обработки

Работа агрегатов плазморезки часто внедряется в различные технологические процессы, связанные с раскроем и резкой металлических и неметаллических материалов. Это обусловлено наличием следующих преимуществ технологии раскроя с помощью плазменной дуги:

Но у метода плазменного раскроя есть и недостатки. К ним относятся:

Несмотря на эти недостатки, плазмотроны находят себе всё большее применение и на крупных предприятиях, и в маленьких домашних мастерских. Использование плазменной резки ускоряет обработку легированных сталей, а точность линии реза и способность вырезать криволинейные фигуры делают плазморезы незаменимыми во многих производственных процессах.

Применяется при обработке проводящих металлов. Обрабатываемый материал получает энергию от источника тока посредством ионизированного газа. Стандартная система включает контур зажигания и резак, которые обеспечивают подачу электроэнергии, ионизацию и управление, необходимые для качественной высокопроизводительной резки различных металлов.

Выход источника постоянного тока задает толщину и скорость обработки материала и поддерживает дугу.

Контур зажигания выполняется в виде высокочастотного генератора переменного напряжения 5-10 тыс. В частотой 2 МГц, которое создает высокоинтенсивную дугу, ионизирующую газ до состояния плазмы.

Резак является держателем для расходных деталей — сопла и электрода — и обеспечивает охлаждение этих деталей газом или водой. Сопло и электрод сжимаются и поддерживают ионизированную струю.

Ручные и механизированные системы служат для разных целей и требуют разного оборудования. Только пользователь может определить, какая из них лучше всего подходит для его нужд.

Резка металла плазмой представляет собой термический процесс, при котором пучок нагревает электропроводный металл до температуры, превышающей точку его плавления, и удаляет расплавленный металл через проделанное отверстие. Между электродом в горелке, к которому подведен отрицательный потенциал, и заготовкой с положительным потенциалом возникает электрическая дуга и происходит резка материала ионизированным потоком газа под давлением при температуре от 770 до 1400 °C. Струя плазмы (ионизированного газа) концентрируется и направляется через сопло, где она уплотняется и становится способной расплавить и разрезать самые разные металлы. Это основной процесс как для ручной, так и для механизированной плазменной резки.

Ручная резка

Ручная резка металла плазмой производится с помощью достаточно небольших устройств с плазменной горелкой. Они маневренны, универсальны и могут быть использованы для выполнения различных задач. Их возможности зависят от силы тока режущей системы. Параметры установок ручной резки варьируются от 7-25 А до 30-100 А. Некоторые устройства, однако, позволяют получить до 200 ампер, но они не являются широко употребительными. В ручных системах в качестве плазмообразующего и защитного газа обычно используется технический воздух. Они сконструированы таким образом, чтобы их можно было использовать с различным входящим напряжением, которое может изменяться от 120 до 600 В, а также использоваться в одно- или трехфазных сетях.

Ручная плазма для резки металла обычно используется в мастерских, занимающихся обработкой тонких материалов, заводских службах технического обслуживания, ремонтных мастерских, пунктах приема металлолома, при строительно-монтажных работах, в судостроении, автомастерских и художественных мастерских. Как правило, ее применяют для обрезки излишков. Обычный 12-амперный плазменный аппарат разрезает максимум 5-мм слой металла со скоростью около 40 мм в минуту. 100-амперное устройство режет 70-мм слой со скоростью до 500 мм/мин.

Как правило, ручная система выбирается в зависимости от толщины материала и желаемой скорости обработки. Устройство, которое обеспечивает высокую силу тока, работает быстрее. Однако при резке с большой силой тока становится труднее контролировать качество работы.

Машинная обработка

Механизированная резка металла плазмой производится на установках, которые, как правило, значительно больше ручных, и используется в сочетании с раскройными столами, в том числе с водяной ванной или с платформой, оборудованной различными приводами и двигателями. Кроме того, механизированные системы оборудуются ЧПУ и управлением высотой струи режущей головки, которая может включать в себя предустановку высоты резака и контроль напряжения. Механизированные системы плазменной резки могут устанавливаться на другое металлообрабатывающее оборудование, такое как штамповочные прессы, или роботизированные системы. Размер механизированной конфигурации зависит от размера стола и используемой платформы. Раскроечный станок может быть меньше, чем 1200х2400 мм и больше, чем 1400х3600 мм. Такие системы не очень подвижны, поэтому до установки следует предусмотреть все их компоненты, а также место их расположения.

Требования к питанию

Стандартные источники питания обладают максимальным диапазоном силы тока от 100 до 400 А для кислородной резки и от 100 до 600 А для азотной. Многие системы работают в более низком диапазоне, например, от 15 до 50 А. Существуют системы с азотной резкой с силой тока 1000 А и выше, но они редки. Входное напряжение для механизированных плазменных систем составляет 200-600 В в трехфазной сети.

Требования к газу

Для резки мягкой и нержавеющей стали, алюминия, а также различных экзотических материалов обычно используются сжатый воздух, кислород, азот и смесь аргона с водородом. Их комбинации служат плазмообразующим и вспомогательным газом. Например, при резке мягкой стали пусковым газом часто является азот, плазмообразующим - кислород, а сжатый воздух используется как вспомогательный.

Кислород употребляется для мягкой углеродистой стали, потому что он производит высококачественные разрезы в материале толщиной до 70 мм. Кислород также может исполнять роль плазмообразующего газа для нержавеющей стали и алюминия, но результат получается не совсем аккуратным. Азот служит плазменным и вспомогательным газом, поскольку он обеспечивает отличную резку практически любого типа металла. Используется при больших токах и позволяет обрабатывать листовой прокат толщиной до 75 мм и в роли вспомогательного газа для азотной и аргон-водородной плазмы.

Сжатый воздух - наиболее распространенный газ как плазменный, так и вспомогательный. Когда производится слаботочный раскрой листового металла толщиной до 25 мм, оставляет окисленную поверхность. При резке воздухом, азотом или кислородом является вспомогательным газом.

Смесь аргона с водородом, как правило, используется для обработки нержавеющей стали и алюминия. Обеспечивает высококачественный разрез, и необходима для механизированной резки листов толщиной более 75 мм. Диоксид углерода также может быть использован в роли вспомогательного газа, когда производится резка металла плазмой азота, так как это позволяет работать с большинством материалов и гарантирует хорошее качество.

Смесь азота с водородом и метан также иногда применяются в процессе плазменной резки.

Что потребуется еще?

Выбор плазмы и вспомогательных газов - только два из важнейших решений, которые необходимо принимать во внимание при установке или использовании механизированной плазменной системы. Емкости для газа можно приобрести или арендовать, они доступны в различных размерах, и для их хранения необходимо создать соответствующие условия. Установка системы требует значительного количества электропроводки и труб для газа и охлаждающей жидкости. Помимо самой механизированной плазменной системы, требуется подобрать стол, раскроечный станок, ЧПУ и THC. OEM-производители обычно предлагают множество вариантов оборудования, которое подойдет для любой конфигурации устройства.

Нужна ли механизация?

Из-за сложности выбора механизированного процесса плазменной резки, необходимо уделить много времени исследованию различных конфигураций и критериев системы. Следует учесть:

  • типы деталей, которые будут вырезаться;
  • количество промышленных изделий в партии;
  • желаемую скорость и качество резки;
  • стоимость расходных материалов.
  • общую стоимость эксплуатации конфигурации, в том числе электроэнергии, газа и труда.

Размер, форма и количество производимых частей может определять необходимое производственное промышленное оборудование - тип ЧПУ, стола и платформы. Например, производство деталей небольшого размера может потребовать платформы со специализированным приводом. Реечные приводы, сервоприводы, приводные усилители и датчики, используемые на платформах, определяют качество резки и максимальную скорость системы.

Качество и скорость также зависит от того, какое ЧПУ и газы используются. Механизированная система с регулируемым током и потоком газа в начале и в конце резки уменьшит расход материалов. Кроме того, с ЧПУ с большим объемом памяти и выбором возможных установок (например, высоты факела в конце разреза) и быстрая обработка данных (входной/выходной коммуникации) снизит простои и увеличит скорость и точность работы.

В конечном счете решение о покупке или обновлении механизированной системы плазменной резки или использовании ручной должно быть обоснованным.

Плазменная резка металла: оборудование

Hypertherm Powermax45 - переносной аппарат с большим числом стандартных компонентов на основе инвертора, т. е. биполярного транзистора с изолированным затвором. Работать с ним очень легко, независимо от того, режется ли тонкая сталь или листовой прокат толщиной 12 мм со скоростью 500 мм/минуту или 25 мм со скоростью 125 мм/мин. Устройство способно генерировать большую мощность для резки различных видов токопроводящих материалов, таких как сталь, нержавеющая сталь и алюминий.

Система питания имеет преимущество перед аналогами. Входное напряжение - 200-240 В однофазного тока силой 34/28 А при мощности 5,95 кВт. Изменения входного напряжения сети компенсируются технологией Boost Conditioner, благодаря которой резак демонстрирует повышенную производительность на низких напряжениях, при колебаниях входной мощности, а также при питании от генератора. Внутренние компоненты эффективно охлаждаются с помощью системы PowerCool, обеспечивающей повышенную производительность, время работы и надежность устройства. Другой важной особенностью этого продукта является соединение горелки FastConnect, которое облегчает механизированное использование и повышает универсальность.

Факел Powermax45 имеет конструкцию с двойным углом, который продлевает срок службы сопла и снижает Он оснащен функцией Conical Flow, повышающей плотность энергии дуги, благодаря чему значительно сокращает дросс и производится высококачественная плазменная резка. Цена Powermax45 - 1800 $.

Hobart AirForce 700i

Hobart AirForce 700i обладает наибольшей режущей способностью данной линейки: номинальная толщина резки - 16 мм со скоростью 224 мм/мин, а максимальная - 22 мм. По сравнению с аналогами, рабочая сила тока устройства на 30% меньше. Плазменный резак подойдет для станций техобслуживания, ремонтных мастерских и при сооружении небольших построек.

Устройство отличается легким, но мощным инвертором, эргономичным пусковым предохранителем, эффективным потреблением воздуха и недорогими расходными материалами горелки, благодаря чему производится безопасная, качественная и недорогая плазменная резка. Цена AirForce 700i составляет 1500 $.

В комплект входит эргономичная ручная горелка, кабель, 2 сменных наконечника и 2 электрода. Потребление газа составляет 136 л/мин при давлении 621-827 кПа. Вес аппарата - 14,2 кг.

40-амперный выход обеспечивает исключительную производительность резки листового металла - быстрее, чем механические, газовые и плазменные устройства других изготовителей.

Miller Spectrum 625 X-treme

Miller Spectrum 625 X-treme - небольшой аппарат, достаточно мощный для резки различных видов стали, алюминия и других проводящих ток металлов.

Питается от сети переменного тока напряжением 120-240 В, автоматически подстраиваясь под поданное напряжение. Легкий и компактный дизайн делает устройство весьма портативным.

Благодаря технологии Auto-Refire дуга контролируется автоматически, избавляя от необходимости постоянно нажимать кнопку. Номинальная толщина резки при токе 40 А составляет 16 мм при скорости 330 мм/мин, а максимальная - 22,2 мм при 130 мм/мин. Потребляемая мощность - 6,3 кВт. Вес аппарата в ручном исполнении составляет 10,5 кг, а с машинным резаком - 10,7 кг. В качестве плазменного газа используется воздух или азот.

Надежность Miller 625 обеспечивается технологией Wind Tunnel. Благодаря встроенному высокоскоростному вентилятору пыль и мусор не попадают внутрь устройства. Светодиодные индикаторы информируют о давлении, температуре и мощности. Цена аппарата - 1800 $.

Lotos LTP5000D

Lotos LTP5000D - портативный и компактный плазменный аппарат. При весе 10,2 кг проблем с его перемещением не возникнет. 50-амперный ток, производимый цифровым преобразователем, а также мощный транзистор MOSFET обеспечивают эффективный рез мягкой стали толщиной 16 мм и 12 мм нержавеющей стали или алюминия.

Устройство автоматически подстраивается под напряжение и частоту сети. Длина шланга - 2,9 м. Вспомогательная дуга с металлом не контактирует, что позволяет использовать аппарат для резки ржавых, необработанных и окрашенных материалов. Устройство безопасно в использовании. Сжатый воздух, применяемый для резки, не вреден для человека. А крепкий ударопрочный корпус надежно защищает аппарат от попадания пыли и мусора. Цена Lotos LTP5000D - 350 $.

При покупке плазменного резака нужно всегда отдавать предпочтение качеству. Следует остерегаться искушения приобрести дешевый низкокачественный аппарат, так как его быстрый износ в долгосрочной перспективе приведет к гораздо большим затратам. Конечно, переплачивать также не стоит, есть достаточно достойных бюджетных вариантов без аксессуаров и высоких мощностей, которые могут никогда не понадобиться.

) струи плазмы называется плазменной резкой. Поток плазмы образуется в результате обдува газом сжатой электрической дуги. Газ при том нагревается и ионизируется (распадается на отрицательно и положительно заряженные частицы). Температура плазменного потока составляет около 15 тысяч градусов по Цельсию.

Виды и способы резки при помощи плазмы

Резка плазмой бывает:

  • поверхностная;
  • разделительная.

На практике широкое применение нашла разделительная плазменная резка. Поверхностная резка используется крайне редко.

Само резание осуществляется двумя способами:

  • плазменной дугой. При резании стали этим способом разрезаемый металл включается в электрическую цепь. Дуга образуется между вольфрамовым электродом резака и изделием.
  • плазменной струей. Дуга возникает в резаке между двумя электродами. Разрезаемое изделие в электрическую цепь не включается.

Плазменная резка превосходит по производительности кислородную. Но если режется материал большой толщины или титан, то предпочтение надо отдавать кислородной резке. Плазменная резка незаменима при резании (особенно ).

Виды газов, применяемых для плазменного резания.

Для образования плазмы используются газы:

  • активные – кислород, воздух. Применяются при резке черных металлов
  • неактивные – азот, аргон, . Применяются при резке цветных металлов и сплавов.
  1. Сжатый воздух. Используется для резки:
  • меди и ее сплавов – при толщине до 60 mm;
  • алюминия и его сплавов – при толщине до 70 mm;
  • стали – при толщине до 60 mm.
  1. Азот с аргоном. Применяется для резки:
  • высоколегированной стали толщиной до 50 mm.

Применять эту газовую смесь для резания меди, алюминия, и черной стали не рекомендуется;

  1. Чистый азот. Используется для резания (h=толщина материала):
  • меди h равной до 20 mm;
  • латуни h равной до 90 mm;
  • алюминия и его сплавов h равной до 20 mm;
  • высоколегированных сталей h равной до 75 mm, низколегированных и низкоуглеродистых – h равной до 30 mm;
  • титана – любой толщины.
  1. Азот с водородом. Применяется для резки:
  • меди и ее сплавов средних толщин (до 100 mm);
  • алюминия и сплавов средних толщин – до 100 mm.

Азотоводородная смесь непригодна для резки любых сталей и титана.

  1. Аргон с водородом. Применяется при резке:
  • Меди, алюминия и сплавов на их основе толщиной от 100 мм и выше;
  • Высоколегированной стали толщиной до 100 мм.

Для резки углеродистых, низкоуглеродистых и низколегированных сталей, а также для титана аргон с водородом применять не рекомендуется.

Оборудование для плазменной резки: виды и краткая характеристика.

Для механизации плазменной резки созданы полуавтоматы и машины переносные различных модификаций.

1. могут работать как с активными, так и с неактивными газами. Толщина разрезаемого материала колеблется от 60 до 120 мм.

  • Расход газа:
  1. воздух – от 2 до 5 м куб/час;
  2. аргон – 3 м куб/час;
  3. водород – 1 м куб/час;
  4. азот – 6 м куб/час.
  • Скорость перемещения – от 0,04 до 4 м/мин.
  • Рабочее давление газа – до 0,03 МПа.
  • Вес полуавтоматов составляет 1,785 – 0,9 кг в зависимости от модификации.

2. Переносные машины используют сжатый воздух.

  • Толщина разрезаемого материала – не более 40 мм.
  • Расход сжатого воздуха – от 6 до 50 м куб/час;
  • Охлаждение плазмотронов – водой или воздухом.
  • Скорость перемещения – от 0,05 до 4 м/мин.
  • Рабочее давление газа – до 0,4 – 0,6 МПа.
  • Вес переносных машин – до 1,8 кг в зависимости от модификации.
  • Плазмотроны, охлаждаемые водой, могут эксплуатироваться только при плюсовых температурах окружающей среды.
  • Полуавтоматы и переносные машины пригодны для промышленного использования.

Для ручной резки выпускаются два комплекта:

  • КДП-1 с плазмотроном РДП-1;
  • КДП-2 с плазмотроном РДП-2.

Резание плазмой

Аппарат КДП-1 используется для резки алюминия (до 80 мм), нержавеющих и высоколегированных сталей (до 60 мм) и меди (до 30 мм).

Максимальный рабочий ток – 400 А.

Максимальное напряжение холостого хода источника питания – 180 В.

Плазмотрон РДП-1 работает с азотом, аргоном или смеси этих газов с водородом.

Охлаждается плазмотрон РДП-1 водой, потому его можно использовать при температуре выше 0 градусов Цельсия.

Аппарат КДП-2 уступает первому по мощности дуги (всего 30 кВт). Преимущество этой модели в том, что охлаждение плазмотрона РДП-2 осуществляется воздухом. В результате комплект может быть использован на открытом воздухе при любой температуре окружающего воздуха.

Комплектность аппаратов ручной резки:

  • режущий плазмотрон;
  • кабель-шланговый пакет;
  • коллектор;
  • зажигалка для возбуждения режущей дуги.

Комплекты для ручной плазменной резки выпускаются беспультовыми. Такое конструктивное решение рационально для выполнения ограниченного объема работ с загрузкой оборудования не более чем на 40 – 50%. Но на время работы их приходится доукомплектовывать сварочными выпрямителями и преобразователями.

При том не следует забывать, что с точки зрения техники безопасности для ручной резки допускается величина напряжения холостого хода источника питания не более 180 В.

Плазменная резка металлов выполненная своими руками: некоторые тонкости процесса.

  • Началом процесса резания металлов считается момент возбуждения плазменной дуги. Начав резку, необходимо поддерживать постоянное расстояние между соплом плазмотрона и поверхностью материала. Оно должно быть от 3 до 15 мм.
  • Необходимо стремиться к тому, чтобы в процессе работы ток был минимальным, потому что при увеличении силы тока и расхода воздуха снижается ресурс работы сопла плазмотрона и электрода. Но при этом уровень тока должен обеспечивать оптимальную производительность резки.
  • Наиболее сложной операцией является пробивка отверстий. Сложность заключается в возможном образовании двойной дуги и выходе из строя плазмотрона. Потому при пробивке плазмотрон должен быть поднят над поверхностью металла на 20 – 25 мм. Опускается плазмотрон в рабочее положение только после того, как металл будет пробит насквозь. При пробивке отверстий в листах большой толщины специалисты рекомендуют использовать защитные экраны с отверстиями диаметром 10-20 мм. Экраны помещаются между изделием и плазмотроном.
  • Для ручной резки высоколегированных сталей в качестве плазмосодержащего газа применяется азот.
  • При ручной резке алюминия с применением аргоноводородной смеси содержание водорода не должно превышать 20% для повышения стабильности горения дуги.
  • Резку меди выполняют с использованием водородосодержащих смесей. А вот латунь требует азота или азотоводородной смеси. При этом резка латуни происходит на 20% быстрее, чем меди.
  • После резки медь обязательно зачищают на глубину 1-1,5 мм. Для латуни это требование не является обязательным.

В настоящее время на крупных промышленных объектах и небольших предприятиях активно используется ручная плазменная резка, которая дает возможность произвести максимально точную обработку металлов практически любой толщины и конфигурации.

Еще совсем недавно для того, чтобы сделать необходимый рез на металлической поверхности, приходилось прибегать к достаточно громоздким и совершенно неудобным газовым резакам, которые к тому же не всегда могли справиться с поставленной задачей.

Современное оборудование имеет не только компактные размеры, но и обладает высокими функциональными возможностями и большим потенциалом работы.

Следует отметить и то, что аппарат для плазменной ручной резки достаточно просто освоить, а сама технология выполнения работ доступна даже не квалифицированным умельцам.

В специализированных магазинах можно найти большой выбор ручных устройств, предназначенных для плазменной резки металлов.

Несмотря на то, что цена на данное оборудование достаточно высокая, оно пользуется большим спросом, в первую очередь, из-за своих функциональных возможностей.

На видео, которое размещено ниже, можно наблюдать технологию работы на ручном устройстве для резки при помощи плазмы.

Ручная плазменная резка, при которой используется ручной плазменный аппарат, можно отнести к термической обработке, при которой материал плавится.

В данном конкретном случае основным режущим инструментом является поток низкотемпературной плазмы под большим давлением, которая образуется за счет некоторых специфических процессов.

Используемое для работы плазменное оборудование обязательно имеет специальный электрод, который при помощи сопла и рабочего металла создает электрическую дугу, внешняя температура которой в некоторых отдельных случаях достигает нескольких тысяч градусов по Цельсию.

В определенный момент в сопло начинает подаваться под большим давлением специальный газ, что способствует тому, что рабочая температура многократно повышается, а это, в свою очередь, приводит к ионизации газа и, соответственно, преобразование его в плазму, которую называют низкотемпературной.

Следует отметить и то, что ионизация имеет свойство при нагреве от дуги возрастать, а это делает температуру газового потока еще большей. Сам рабочий поток ярко светится и становится электропроводным.

Аппарат, используемый для обработки металла при помощи плазмы, способен локально разогревать металлическую заготовку и плавить ее непосредственно в необходимом месте реза.

Для того чтобы получить плазму, необходимо в определенных пропорциях смешать определенные виды газов.

За основу берется атмосферный воздух, который смешивается с кислородом, азотом, а также водородом и аргоном. В состав плазмы также входит водяной пар.

Для того чтобы при работе сопло не оплавилось под воздействием высоких температур, предусмотрено его специальное охлаждение за счет потока жидкости или газа.

Конечно, использовать в быту аппарат для плазменной резки достаточно проблематично, так как требуются определенные условия его эксплуатации, однако данное оборудование установлено на многих промышленных предприятиях.

Стоит отметить, что цена такого устройства достаточно высокая и для многих домашних мастеров просто не подъемная.

В настоящее время такое оборудование активно используется в самых разных сферах и дает возможность получать не только ровный, но и аккуратный рез.

Более подробно узнать о возможностях ручных аппаратов для плазменной резки можно на видео, которое размещено ниже.

Классификация и характеристики оборудования

То оборудование, которое используется для плазменной резки металлических заготовок, можно поделить в зависимости от его действия на обрабатываемую поверхность.

Для бесконтактной резки используется оборудование косвенного действия, в свою очередь, для контактной – прямого.

Резка косвенного действия используется при необходимости провести обработку неметаллических заготовок, соответственно, второй тип резки используется исключительно для работы с металлами.

В этом случае и аппарат, и сама обрабатываемая деталь включатся в единую схему, что и приводит к образованию необходимой дуги.

Идущий из сопла ионизированный поток газа равномерно прогревается по всему участку, вплоть до самой заготовки. Для того чтобы работать с металлом, требуется оборудование, предназначенное только для прямого действия.

Используемый для плазменной резки ручной аппарат получает питание от электрической сети.

Следует отметить, что данный тип резки металлов является не только востребованным, но и экономически обоснованным, даже несмотря на то, что цена оборудования достаточно высокая.

В настоящее время резка плазмой уже стала традиционным способом обработки металлов.

Для того чтобы выполнить необходимую раскройку материалов при использовании аппарата для плазменной резки, не нужно обладать специальной подготовкой и иметь квалификацию.

Работа выполняется достаточно быстро при минимальных трудозатратах.

За счет того, что в рабочем процессе активно участвует воздух, удается сократить расход газа, однако при этом значительно увеличивается вес и габариты используемого оборудования.

Современные устройства, которые применяются для ручной резки плазмой, имеют компактные размеры и привлекательный внешний вид.

Они дополнительно для повышения удобства эксплуатации оснащаются подъемными ручками, всевозможными колесиками, а их корпуса производятся преимущественно из легких композитных материалов.

На видео ниже представлен ручной аппарат для плазменной резки.

Конструктивные особенности

Ручное плазменное оборудование состоит из нескольких технологических элементов, которые и обеспечивают его работоспособность.

Одним из главных элементов является сам плазмотрон, функционирование которого обеспечивает источник заданного питания с определенными рабочими параметрами.

Также в состав ручного плазменного аппарата в обязательном порядке входят набор кабелей, специальных шлангов с соответствующим сечением.

Дополнительно работу плазменного аппарата обеспечивает универсальный компрессор. Стоит отметить, что плазмотрон, который и выполняет роль резака, имеет достаточно сложную конструкцию.

В его состав входят непосредственно само сопло и специальный электрод, между которыми особым образом устроен изолятор с высокими показателями термостойкости.

Именно в плазмотроне происходит преобразование дуги электричества в тепловую энергию плазмы. Скорость, а также форму потока плазмы регулирует сопло, имеющее сложную конструкцию.

При работе на ручном плазменном аппарате оператор самостоятельно контролирует ровность линии реза.

Большое значение при работе на ручном плазменном аппарате имеет опыт оператора.

Так как рабочий аппарат человек постоянно держит на весу, возможны непроизвольные движения, которые могут привести к появлению дефектов и снижению качества выполняемого раскроя.

Неопытный оператор может сделать рез не только неровным, но и с наплывами и следами рывков.

Чтобы этого не произошло, выпускаются самые разные дополнительные устройства в виде упоров и подставок.

При их использовании даже у неопытного оператора рез получается максимально ровный и качественный.

Ручной агрегат для плазменной резки металлов — это огромные функциональные возможности в области обработки металлов различной толщины и конфигурации.

Посмотреть, как производится процесс резки металлов при помощи аппарата плазменного ручного типа, можно на видео, которое размещено ниже.

Качество выполняемой обработки напрямую зависит от конфигурации и типа сопла, так, в частности, его диаметр может влиять на скорость образования и формирование самой дуги.

Кроме этого, этот показатель оказывает влияние на объем пропускаемого воздуха или газа, а также ширину реза.

Правильно подобранный диаметр позволяет получить на выходе чистый и качественный рез с ровными кромками.

Следует отметить то, что сопло можно в любой момент поменять на новое, а кроме этого, есть возможность увеличить его длину, что позволит несколько улучшить режущие характеристики.

Перед началом работ на ручном аппарате следует тщательно проверить всю схему подключения используемого оборудования, а также исправность кабелей и шлангов.

Не следует перегружать аппарат, так как это может привести к его поломке.

Несмотря на то, что цена такого типа оборудования достаточно высокая, оно достаточно быстро окупается. Все же цена не должна быть определяющим фактором при выборе оборудования.

На видео, которое размещены в нашей статье, можно увидеть все достоинства плазменной резки при помощи ручного типа устройства.



Понравилась статья? Поделитесь ей