Контакты

Назначение пьезометрического графика. Построение пьезометрического графика

При проектировании и эксплуатации разветвленных тепловых сетей, для учета взаимного влияния профиля района, высот присоединяемых зданий, потерь давления в тепловой сети и абонентских установках, используется график. По пьезометрическому графику легко определяется давление и располагаемый перепад давлений в любой точке тепловой сети.

На основании пьезометрического графика выбирается схема присоединения абонентских установок, подбираются повысительные насосы, подпиточные насосы и автоматические устройства.

График давления разрабатывается для состояний покоя системы (гидростатический режим) и динамического режима.

Динамический режим характеризуется линией потерь напора в подающем и обратном трубопроводе, на основании гидравлического расчета сети, и определяется работой сетевых насосов.

Гидростатический режим поддерживается подпиточными насосами в период отключения сетевых насосов.

К водяным тепловым сетям присоединены абоненты, имеющие различные тепловые нагрузки. Они могут быть расположены на различных геодезических отметках и иметь различную высоту. Системы отопления абонентов могут быть рассчитаны на работу с различными температурами воды. В этих случаях необходимо заранее определять давления или напоры в любой точке тепловой сети.

Для этого строится пьезометрический график или график напоров тепловой сети, на котором в определенном масштабе нанесены рельеф местности, высота присоединенных зданий, напор в тепловой сети; по нему легко определить напор (давление) и располагаемый напор (перепад давлений) в любой точке сети и абонентских системах.

Кроме определения напоров в любой точке сети и по пьезометрическому графику можно проверить соответствие предельных давлений в тепловой сети прочности элементов систем теплоснабжения. По графику напоров выбираются схемы присоединения потребителей к тепловой сети и подбирается оборудование тепловых сетей (сетевые и подпиточные насосы, автоматические регуляторы давления и т. п.). График стоится при двух режимах работы тепловых сетей - статическом и динамическом.



Статический режим характеризуется давлениями в сети при неработающих сетевых, но включенных подпиточных насосах. Циркуляция воды в сети отсутствует. При этом подпиточные насосы должны развивать напор, обеспечивающий невскипаемость воды в тепловой сети.

Динамический режим характеризуется давлениями, возникающими в тепловой сети и в системах потребителей теплоты при работающих сетевых насосах, обеспечивающих циркуляцию воды в системе.

Пьезометрический график разрабатывается для основной магистрали теплосети и протяженных ответвлений. Он может быть построен только после выполнения гидравлического расчета трубопроводов - по рассчитанным падениям давления на участках тепловой сети.

График строится по двум осям - вертикальной и горизонтальной. На вертикальной оси откладывают напоры в любой точке сети, напоры насосов, профиль сети, высоты отопительных систем в метрах, на горизонтальной -длины участков тепловой сети.

При построении условно принимают, что ось трубопроводов и геодезические отметки установки насосов и нагревательных приборов в первом этаже зданий совпадают с отметкой земли. Высшее положение воды в отопительных системах совпадает с верхней отметкой здания.

Изм.
Лист
№ докум.
Подпись
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ
2.7 Расчет конструктивных элементов тепловой сети

В результате теплового воздействия теплоносителя на трубопровод возникает тепловое удлинение металла.

Расчет проводиться по «Справочник по теплоснабжению и вентиляции- Р. В. Щекин».

Величина теплового удлинения трубопровода определяется по формуле:

∆l=a–l(t 1 -t 2) (22)

где: a- коэффициент линейного расширения трубных сталей, мм/м

l-длина рассматриваемого участка, м

t 1 -максимальная температура стенки трубы, т.е. принимается равной максимальной температуре теплоносителя, 0 С (t 1 -130;150 0 С)

t 2 -минимальная температура стенки трубы, принимаемой равной расчетной температуре наружного воздуха для отопления (t 2 = t 0).

Для обеспечения правильной работы компенсаторов и самокомпенсации трубопроводы делятся неподвижными опорами на отдельные участки, независимые один от другого в отношении теплового удлинения.

На каждом участке трубопровода, ограниченном сменными неподвижными опорами, предусматривается установка компенсатора и самокомпенсации.

При расстановке на трассе неподвижных опор нужно иметь ввиду следующие:

Неподвижные опоры устанавливаются в первую очередь в местах ответвлений трубопровода;

При расстановке неподвижных опор (НО) на прямых участках исходят из допускаемых расстояний между неподвижными опорами в зависимости от диаметра труб, типа компенсаторов и параметров теплоносителя.

Расчет трубопроводов на компенсацию тепловых удлинений с гибкими компенсаторами(П-образными) и при самокомпенсации производят на допускаемое изгибающие компенсационное напряжение G доп труб ГОСТ 10704-91,которое можно принять:

Для П- образных компенсаторов при Т≤ 150 0 С, G доп =11кг/мм 2

Для расчета участков самокомпенсации при Т≤ 150 0 С, G доп =8 кг/мм 2

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ

Исходные данные для расчета:

Расчетный участок 3-4

Диаметр трубы d у =108–4

Расстояние между неподвижными опорами, м l=70м

Максимальная температура теплоносителя t i = 150 0 С

Расчетная температура воздуха t о =26 0 С

Расчетная схема

Рисунок7. Расчетная схема П- образного компенсатора

Тепловое удлинение определяется по формуле

∆l=a–l(t 1 -t 2)

∆l=1,24–70(150+26)/10 -2 =135,408мм

Для увеличения компенсирующей способности П- образного компенсатора и компенсационных напряжений в трубопроводе следует предусматривать предварительную растяжку в размере 50% теплового удлинения.

Расчетное тепловое удлинение участка:

∆l расч =0,5–∆l (23)

∆l расч =0,5–135,408=67,704мм

Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ
Проверить Г-образный участок на самокомпенсацию для участка трубопровода при следующих данных:

Наружный диаметр, мм D н =108×4

Толщина стенки, мм s=3,5

Угол поворота a,град,=90 0 С

Длина большого плеча, м l б =15,0м

Длина меньшего плеча м l м =10,0м

Максимальная температура теплоносителя 0 С, t 1 =150 0 С

Расчетная температура наружного воздуха t н = t 0 =-26 0 С

Расчетная схема

Рисунок8. Расчетная схема Г- образного компенсатора

Расчетный угол: 95 0 С

Расчетная разность температур

∆t=t 1 -t н =150+26=176 0 С (25)

Определяем значение вспомогательных величин (по номограмме VI14. рис 6 и 7)

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ

7 =0,126 ∆t=176 0 С l=10,0

Сила упругой деформации p x и p y и избегающий компенсационное напряжение G кг/мм 2

p x =A× =6× =13,3

p y =12× =26,61

К и(А) =С (А)

К и(А) =3,5× =1,12кгс/см 2

Определение усилий неподвижных опор

Усилия, воспринимаемые неподвижными опорами складываются из неуравновешенных сил внутреннего давления, сил трения в подвижных

опорах и сил упругой деформации П- образных компенсаторов и самокомпенсации.

При определение усилий неподвижные опоры учитываются схема участка трубопровода, неподвижных опор и компенсирующих устройств расстояние неподвижными опорами и т.д.

Для расчета рассматривать схему участка 3-4 с П- образными компенсаторами.

Осевая сила на неподвижную опору определяется по формуле:

Н О1 =Р К1 +q 1 ×μ×l 1 (28)

Р К1 -сила упругой деформации;

q 1 - вес 1 метра трубы с водой (табл. VI 24) с учетом веса изоляции (принять вес 1 метра изоляции 0,5кг);

μ- коэффициент трения для скользящих опор.

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ
Н О1 =Р К1 +d 1 ×М×l 1 =70+17,5×0,3×30=0,27т.
Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ

Подбор тепловой изоляции

Тепловая изоляция повергается непосредственному воздействию наружных температур, влажности воздуха, давлению. В неблагоприятных условиях находится тепловая изоляция при подземной канальной прокладке и особенно при безканальной.

Назначение тепловой изоляции:

Уменьшение потерь тепла в окружающую среду;

Получение определенной температуры на изолируемой поверхности;

Предохранение от внешней коррозии.

Тепловая изоляция применяется при всех видах прокладки тепловых сетей независимо от способа прокладки и температуры теплоносителя.

Подбор толщины тепловой изоляции и конструкцию слоев выполнить по приложению 8,9,10,11.

Данные подбора оформляется в таблицу 5.

Таблица 5- Подбор тепловой изоляции

Расчетная температура 0 С Условный диаметр Толщина изоляции трубопровода Способ прокладки Конструкция изоляции
Т 1 Т 2 Т 3 Антикор.покр. Осн.теплоизол.слой Покровный слой
Т 1 , Т 2 Подземный в непроходных каналах, тоннелях и надземный Изол в два слоя по холодной изольной мастике марки МРБ – Х-Т15 ГОСТ 10296-79ТУ21-27-37-74 МПСМ Плотно холосто-прошивное из отходов стеклянного волокна Стеклотекстолит конструкционный КАСТ-В стеклотекстолит покровный листовой СТПЛ
150-70 45×3,5
76×3,5
89×3,5
108×4 Маты из стеклянного штапельного волокна в рулонах
133×4
Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ
Заключение

В результате выполнения курсового проекта по теплоснабжению жилого квартала были приняты следующие технические решения:

1.Система тепловых сетей централизованная водяная закрытая как наиболее приемлемая и экономически- выгодная для теплоснабжения жилого квартала;

2. Применение новых технологий в теплоизоляции обеспечивает выгодное качество работ по энергосбережению;

3.В ЦТП установлены:

Пластинчатые теплообменники, имеющие массу преимуществ:

небольшие габариты и высокий коэффициент теплоотдачи;

Контрольно-измерительные приборы и автоматика;

4. Параметры теплоносителя повышенные, что позволит сократить расход сетевой воды, металлоемкость системы и расход газа и электричества;

5.Гидравлическим расчетом определяется диаметр трубопроводов, потери давления в сети.


Литература

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ

1. Апарцев, М.М. Наладка водяных систем центрального тепло­снабжения. - М.: Энергия, 1982.

2. Ионин А.А. Теплоснабжение: учебник для вузов / М., Стройиздат. 1982

3. Варфоломеева, Л. Е. Методические указания по курсовому проектированию. Теплоснабжение. – В.: ВГЭТК, 2005.

4. Манюк, В.И. Справочник. Наладка и эксплуатация водяных тепловых сетей. - М.: Стройиздат, 1988.

На пьезометрическом графике в масштабе наносятся рельеф местности, высота присоединенных зданий, напор в сети. По этому графику легко определить напор и располагаемый напор в любой точке сети и абонентских системах.

За горизонтальную плоскость отсчета напоров принят уровень 1 – 1 (см.рис.6.5). Линия П1 – П4 – график напоров подающей линии. Линия О1 – О4 – график напоров обратной линии. Н о1 – полный напор на обратном коллекторе источника; Н сн – напор сетевого насоса; Н ст – полный напор подпиточного насоса, или полный статический напор в тепловой сети; Н к – полный напор в т.К на нагнетательном патрубке сетевого насоса; DH т – потеря напора в теплоприготовительной установке; Н п1 – полный напор на подающем коллекторе, Н п1 = Н к – DH т. Располагаемый напор сетевой воды на коллекторе ТЭЦ Н 1 =Н п1 -Н о1 . Напор в любой точке сети i обозначается как Н п i , H oi – полные напоры в прямом и обратном трубопроводе. Если геодезическая высота в точке i есть Z i , то пьезометрический напор в этой точке есть Н п i – Z i , H o i – Z i в прямом и обратном трубопроводах, соответственно. Располагаемый напор в точке i есть разность пьезометрических напоров в прямом и обратном трубопроводах – Н п i – H oi . Располагаемый напор в тепловой сети в узле присоединения абонента Д есть Н 4 = Н п4 – Н о4 .

Рис.6.5. Схема (а) и пьезометрический график (б) двухтрубной тепловой сети

Потеря напора в подающей линии на участке 1 – 4 есть . Потеря напора в обратной линии на участке 1 – 4 есть . При работе сетевого насоса напор Н ст подпиточного насоса регулируется регулятором давления до Н о1 . При остановке сетевого насоса в сети устанавливается статический напор Н ст, развиваемый подпиточным насосом.

При гидравлическом расчете паропровода можно не учитывать профиль паропровода из-за малой плотности пара. Потери напора у абонентов, например , зависит от схемы присоединения абонента. При элеваторном смешении DН э = 10…15 м, при безэлеваторном вводе – Dн бэ =2…5 м, при наличии поверхностных подогревателей DН п =5…10 м, при насосном смешении DН нс = 2…4 м.

Требования к режиму давления в тепловой сети:

В любой точке системы давление не должно превышать максимально допустимой величины. Трубопроводы системы теплоснабжения рассчитаны на 16 ата, трубопроводы местных систем – на давление 6…7 ата;

Во избежание подсосов воздуха в любой точке системы давление должно быть не менее 1.5 ата. Кроме того, это условие необходимо для предупреждения кавитации насосов;

В любой точке системы давление должно быть не меньше давления насыщения при данной температуре во избежание вскипания воды.

При проектировании и эксплуатации разветвленных тепловых сетей, для учета взаимного влияния профиля района, высот присоединяемых зданий, потерь давления в тепловой сети и абонентских установках, используется график. По пьезометрическому графику легко определяется давление и располагаемый перепад давлений в любой точке тепловой сети.

На основании пьезометрического графика выбирается схема присоединения абонентских установок, подбираются повысительные насосы, подпиточные насосы и автоматические устройства.

График давления разрабатывается для состояний покоя системы (гидростатический режим) и динамического режима.

Динамический режим характеризуется линией потерь напора в подающем и обратном трубопроводе, на основании гидравлического расчета сети, и определяется работой сетевых насосов.

Гидростатический режим поддерживается подпиточными насосами в период отключения сетевых насосов.

К водяным тепловым сетям присоединены абоненты, имеющие различные тепловые нагрузки. Они могут быть расположены на различных геодезических отметках и иметь различную высоту. Системы отопления абонентов могут быть рассчитаны на работу с различными температурами воды. В этих случаях необходимо заранее определять давления или напоры в любой точке тепловой сети.

Для этого строится пьезометрический график или график напоров тепловой сети, на котором в определенном масштабе нанесены рельеф местности, высота присоединенных зданий, напор в тепловой сети; по нему легко определить напор (давление) и располагаемый напор (перепад

Лист
№ докум.
Подпись
Дата
Лист
ВЭТК.401Т.16.КП.46д.ТС
прочности элементов систем теплоснабжения. По графику напоров выбираются схемы присоединения потребителей к тепловой сети и подбирается оборудование тепловых сетей (сетевые и подпиточные насосы, автоматические регуляторы давления и т. п.). График стоится при двух режимах работы тепловых сетей - статическом и динамическом.

Статический режим характеризуется давлениями в сети при неработающих сетевых, но включенных подпиточных насосах. Циркуляция воды в сети отсутствует. При этом подпиточные насосы должны развивать напор, обеспечивающий невскипаемость воды в тепловой сети.

Динамический режим характеризуется давлениями, возникающими в тепловой сети и в системах потребителей теплоты при работающих сетевых насосах, обеспечивающих циркуляцию воды в системе.

Пьезометрический график разрабатывается для основной магистрали теплосети и протяженных ответвлений. Он может быть построен только после выполнения гидравлического расчета трубопроводов - по рассчитанным падениям давления на участках тепловой сети.

График строится по двум осям - вертикальной и горизонтальной. На вертикальной оси откладывают напоры в любой точке сети, напоры насосов, профиль сети, высоты отопительных систем в метрах, на горизонтальной -длины участков тепловой сети.

При построении условно принимают, что ось трубопроводов и геодезические отметки установки насосов и нагревательных приборов в первом этаже зданий совпадают с отметкой земли. Высшее положение воды в отопительных системах совпадает с верхней отметкой здания.

Полный напор в нагнетательном патрубке сетевого насоса соответствует отрезку Н н. Полный напор на обратном коллекторе источника теплоснабжения соответствует отрезку Н o .

Напор, развиваемый сетевым насосом, соответствует вертикальному отрезку Н С =Н H -Н 0 , потери напора в теплоподготовительной установке источника теплоснабжения (в сетевых подогревателях или водогрейных котлах) соответствуют вертикальному отрезку Н Т. Таким образом, напор на подающем коллекторе источника теплоснабжения соответствует вертикальному отрезку

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВЭТК.401Т.16.КП.46д.ТС
Н ит =Н с - .

На пьезометрическом графике в масштабе наносятся рельеф местности, высота присоединенных зданий, напор в сети. По этому графику легко определить напор и располагаемый напор в любой точке сети и абонентских системах.

За горизонтальную плоскость отсчета напоров принят уровень 1 – 1 (см.рис.6.5). Линия П1 – П4 – график напоров подающей линии. Линия О1 – О4 – график напоров обратной линии. Н о1 – полный напор на обратном коллекторе источника; Н сн – напор сетевого насоса; Н ст – полный напор подпиточного насоса, или полный статический напор в тепловой сети; Н к – полный напор в т.К на нагнетательном патрубке сетевого насоса; DH т – потеря напора в теплоприготовительной установке; Н п1 – полный напор на подающем коллекторе, Н п1 = Н к – DH т. Располагаемый напор сетевой воды на коллекторе ТЭЦ Н 1 =Н п1 -Н о1 . Напор в любой точке сети i обозначается как Н п i , H oi – полные напоры в прямом и обратном трубопроводе. Если геодезическая высота в точке i есть Z i , то пьезометрический напор в этой точке есть Н п i – Z i , H o i – Z i в прямом и обратном трубопроводах, соответственно. Располагаемый напор в точке i есть разность пьезометрических напоров в прямом и обратном трубопроводах – Н п i – H oi . Располагаемый напор в тепловой сети в узле присоединения абонента Д есть Н 4 = Н п4 – Н о4 .

Рис.6.5. Схема (а) и пьезометрический график (б) двухтрубной тепловой сети

Потеря напора в подающей линии на участке 1 – 4 есть . Потеря напора в обратной линии на участке 1 – 4 есть . При работе сетевого насоса напор Н ст подпиточного насоса регулируется регулятором давления до Н о1 . При остановке сетевого насоса в сети устанавливается статический напор Н ст, развиваемый подпиточным насосом.

При гидравлическом расчете паропровода можно не учитывать профиль паропровода из-за малой плотности пара. Потери напора у абонентов, например , зависит от схемы присоединения абонента. При элеваторном смешении DН э = 10…15 м, при безэлеваторном вводе – Dн бэ =2…5 м, при наличии поверхностных подогревателей DН п =5…10 м, при насосном смешении DН нс = 2…4 м.

Требования к режиму давления в тепловой сети:

В любой точке системы давление не должно превышать максимально допустимой величины. Трубопроводы системы теплоснабжения рассчитаны на 16 ата, трубопроводы местных систем – на давление 6…7 ата;

Во избежание подсосов воздуха в любой точке системы давление должно быть не менее 1.5 ата. Кроме того, это условие необходимо для предупреждения кавитации насосов;

В любой точке системы давление должно быть не меньше давления насыщения при данной температуре во избежание вскипания воды.

Конец работы -

Эта тема принадлежит разделу:

Гидравлический расчет тепловых сетей

В задачу гидравлического расчета входят.. определение диаметра трубопроводов.. определение падения давления напора..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Схемы и конфигурации тепловых сетей
Схема тепловой сети (ТС) определяется размещением источников тепла по отношению к району потребления, характером тепловой нагрузки и видом теплоносителя. Удельная протяженность паровых сетей на еди

Основные расчетные зависимости
Одномерное установившееся движение жидкости

Порядок гидравлического расчета
Обычно при гидравлическом расчете задаются расход теплоносителя и суммарное падение давления на участке. Требуется найти диаметр трубопровода. Расчет состоит из двух этапов – предварительного и пов

Особенности гидравлического расчета паропроводов
Диаметр паропровода рассчитывают исходя либо из допустимых потерь давления, либо из допустимой скорости пара. Предварительно задается плотность пара на расчетном участке. При расчете по до

Режим давления в сети и выбор схемы абонентского ввода
1. Для нормальной работы потребителей тепла напор в обратной линии должен быть достаточен для заполнения системы, Ho > DHмс. 2. Давлени

Гидравлический режим тепловых сетей
Потери давления в сети пропорциональны квадрату расхода -. Пользуясь формулой для р

Включение насосных подстанций
Насосные подстанции могут устанавливаться на подающем, обратном трубопроводах, а также на перемычке между ними. Сооружение подстанций вызывается неблагоприятным рельефом, большой дальностью передач


Если ТС питается от нескольких источников тепла, то в магистральных линиях возникают точки встречи потоков воды от разных источников. Положение этих точек зависит от сопротивления ТС, распределения


Рис.6.18. График напоров в кольцевой сети

Гидравлический режим открытых систем теплоснабжения
Основная особенность гидравлического режима открытых систем теплоснабжения заключается в том, что при наличии водоразбора расход воды в обратной линии меньше, чем в подающей. Практически эта разнос

5.5. Пьезометрический график

При проектировании и эксплуатации разветвленных тепловых сетей широко используется пьезометрический график, на котором в конкретном масштабе нанесены рельеф местности, высота присоединенных зданий, напор в сети; по нему легко определить напор () и располагаемый напор (перепад давлений) в любой точке сети и абонентских системах.

На рис. 5.5 приведены пьезометрический график двухтрубной водяной системы теплоснабжения и принципиальная схема системы. За горизонтальную плоскость отсчета напоров принят уровень I - I , имеющий горизонтальную отметку 0; , график напоров подающей линии сети; , – график напоров обратной линии сети; – полный напор в обратном коллекторе источника теплоснабжения напор, развиваемый сетевым ом 1; Н ст полный напор, развиваемый подпиточным ом, или, что то же, полный статический напор тепловой сети; Н к полный напор в точке К на нагнетательном патрубке а 1; потеря напора сетевой воды в теплоподготовительной установке III ;

Н n 1 – полный напор в подающем коллекторе источника теплоснабжения: . Располагаемый напор сетевой воды на коллекторах . Напор в любой точке тепловой сети, например в точке 3, обозначается следующим образом: – полный напор в точке 3 подающей линии сети; полный напор в точке 3 обратной линии сети.

Если геодезическая высота оси трубопровода над плоскостью отсчета в этой точке сети равна Z 3 , то пьезометрический напор в точке 3 подающей линии , а пьезометрический напор в обратной линии . Располагаемый напор в точке 3 тепловой сети равен разности пьезометрических напоров подающей и обратной линий тепловой сети или, что одно и то же, разно сти полных напоров .

Располагаемый напор в тепловой сети в узле присоединения абонента Д:

Потеря напора в обратной линии на этом участке тепловой сети

При гидравлическом расчете паровых сетей профиль паропровода можно не учитывать вследствие малой плотности пара. Падение давления на участке паропровода принимается равным разности давлений в концевых точках участка. Правильное определение потери напора, или падения давления в трубопроводах, имеет первостепенное значение для выбора их диаметров и организации надежного гидравлического режима сети.

Для предупреждения ошибочных решений следует до проведения гидравлического расчета водяной тепловой сети наметить возможный уровень статических напоров, а также линии предельно допустимых максимальных и минимальных гидродинамических напоров в системе и, ориентируясь по ним, выбрать характер пьезометрического графика из условия, что при любом ожидаемом режиме работы напоры в любой точке системы теплоснабжения не выходят за допустимые пределы. На основе технико-экономического расчета следует лишь уточнить значения потерь напора, не выходя за пределы, намеченные по пьезометрическому графику. Такой порядок проектирования позволяет учесть технические и экономические особенности проектируемого объекта.

Основные требования к режиму давлений водяных тепловых сетей из условия надежности работы системы теплоснабжения сводятся к следующему:

1) не разрешается превышение допустимых давлений в оборудовании источника, тепловой сети и абонентских установок. Допустимое избыточное (сверх атмосферного) в стальных трубопроводах и арматуре тепловых сетей зависит от применяемого сортамента труб и в большинстве случаев составляет 1,6–2,5 МПа;

2) обеспечение избыточного (сверх атмосферного) давления во всех элементах системы теплоснабжения для предупреждения кавитации ов (сетевых, подпиточных, смесительных) и защиты системы теплоснабжения от подсоса воздуха. Невыполнение этого требования приводит к коррозии оборудования и нарушению циркуляции воды. В качестве минимального значения избыточного давления принимают 0,05 МПа (5 м вод. ст.);

3) обеспечение не вскипания сетевой воды при гидродинамическом режиме системы теплоснабжения, т.е. при циркуляции воды в системе.

Во всех точках системы теплоснабжения должно поддерживаться , превышающее насыщенного водяного пара при максимальной температуре сетевой воды в системе.



Понравилась статья? Поделитесь ей