Контакты

Устройство для компенсации температурных удлинений трубопроводов тепловых сетей. Компенсация температурных удлинений трубопроводов тепловых сетей. Виды компенсаторов. Конструктивные решения, выбор и расчет узлов самокомпенсации и П- образных компенсаторов

Существует ряд вариантов температурных удлинений компенсации в теплосетях. Компенсаторы гибкие производят из труб, имеют они чаще всего Г- или П-образную форму. Обычно, компенсаторы гибкие вне зависимости от способа теплопроводной прокладки укладывают в каналах сечения непроходного (нишах), что повторяют в плане форменный вид компенсатора.

В теплосетях подземных, главным образом на трубопроводах диаметра большого, чаще всего потребляются компенсаторы осевые типа скользящего (компенсаторы сальниковые). В областях установки компенсаторы сальниковые имеют свойство секционирования трубопроводов на участки, что не связаны металлически между собой. В данном случае при присутствии разности потенциалов между стаканом компенсатора и корпусом цепь электрическая замкнётся по воде, что может обусловить протекание процесса электрохимического, на внутренних поверхностях компенсатора сальникового коррозионных процессов. Но как показывает практика, во нередких случаях возникает связи металлическая между двумя частями компенсатора, вследствие контакта стакана с грундбуксом. В процессе использования компенсатора сальникового контакт металлический между частями его отдельным может иногда возникать и прерываться.

Компенсаторы сальниковые, арматуру запорную как и иное оборудование, что требует обслуживание, помещают в камеры что расположены друг от друга на не более 150-200 метров расстояния. Выполняются камеры из кладки кирпичной, бетона монолитного или железобетона. Из-за ощутимых оборудования габаритов обычно камеры имеют немаленькие размеры. Из-за того, что между ограждающими конструкциями и температурами оборудования резкое различие возникает в камерах постоянная конвекция воздуха влажного и как в результате этого конденсат на поверхностях, которые имеют температуру ниже точки росы.

В итоге, происходит в отдельных участках сосредоточенное увлажнение тепловой изоляции труб в камере и участках, что примыкают к ней, канала, капелью с перекрытий со стен, осуществляется через которые ввод в камеры труб, с помощью плёнки влаги, что стекает с щитовых плоскостей опор, что размещены в камерах. Ввод в камеры труб производится через окна специальные в стенках камер. Структура узла ввода имеет значение важное, главным образом для тепловых проводов прокладки бесканальной в связи с наличием возможности трубной просадки и в итоге этого деформации конструкции изоляции. Структурой ввода труб узла в камеры, обусловлена кроме того и уровень защищённости тепловой изоляции от аэрации и увлажнения на данном участке.

Для того, чтобы обеспечить компенсацию удлинений температурных на довольно коротких участках точки отдельные тепловых проводов фиксируют опорами неподвижными, а иная часть тепловых проводов перемещается свободно по отношению к этим опорам. Данным образом опоры неподвижные теплопровод делят на независимые по отношению к температурным удлинениям участки. Опоры при этом воспринимают усилия, что возникают в трубопроводах, при разновидных способах и схемах компенсации удлинений температурных. Установку опор неподвижных предусматривают при различных способах теплопроводной прокладки.

Участки установки опор неподвижных совмещают как обычно с узлами трубных ответвлений, точками расположения запорной аппаратуры на трубопроводах, компенсаторов сальниковых, грязевиков и иного оборудования. Расстояние между опорами неподвижными зависит основным образом от трубопроводного диаметра, температуры теплового носителя, и способности компенсации компенсаторов установленных. При температуре воды максимальной, что равна 150 градусам, для трубопроводов диаметром от 50-ти до 1000 миллиметров между опорами расстояния могут быть от 60 до 200 метров.

В виде несущей структуры в опорах неподвижных могут потребляться швеллеры стальные, балки железобетонные (опоры лобовые) или щиты железобетонные щиты (опоры щитовые). Опоры лобовые устанавливают обычно в камерах, опоры щитовые в данный момент более широко потребляемые, устанавливают в каналах и камерах. На участке трубного прохода через опору щитовую предполагается зазор. Трубы на данных участках иметь должны покрытие защитное, как и на иных трубных частях. Зазор промеж опор и труб быть должен, заполнен набивкой эластичной, которая предотвращает попадание влаги в зазор. В случае потребления набивок поглощающих влагу, как практика показала, на данном участке может произойти образование опасного очага коррозионных процессов. Опоры щитовые в нижней части своей иметь должны отверстия для пропускания воды и предотвращения грунтом заноса каналов.

Конструкции несущие опор неподвижных имеют контакты непосредственные с грунтом или через конструкцию ограждающие камер и каналов. Потому при отсутствии прокладок диэлектрических промеж упор (опоры лобовые) или кольцами опорными, (опоры щитовые) и конструкцией несущей опора неподвижная является заземлением теплопровода сосредоточенным, то есть элементов, что обуславливает вариант попадания токов блуждающих в теплосеть, а в вариантах потребления защиты электрохимической – элементом, что снижает эффективность её.

12.1. Одно из условий сохранения прочности и надежной работы трубопроводов - полная компенсация температурных деформаций.

Температурные деформации компенсируют за счет поворотов и изгибов трассы трубопроводов. При невозможности ограничиться самокомпенсацией (например, на совершенно прямых участках значительной протяженности) на трубопроводах устанавливают П-образные, линзовые или волнистые компенсаторы.

12.2. Не допускается применять сальниковые компенсаторы на технологических трубопроводах, транспортирующих среды групп А и Б.

12.3. При расчете самокомпенсации трубопроводов и конструктивных размеров специальных компенсирующих устройств можно рекомендовать следующую литературу:

Справочник проектировщика. Проектирование тепловых сетей. М.: Стройиздат, 1965. 396 с.

Справочник по проектированию электрических станций и сетей. Раздел IX. Механические расчеты трубопроводов. М.: Теплоэлектропроект, 1972. 56 с.

Компенсаторы волнистые, их расчет и применение. М.: ВНИИОЭНГ, 1965. 32 с.

Руководящие указания по проектированию стационарных трубопроводов. Вып. II. Расчеты трубопроводов на прочность с учетом напряжений компенсации, № 27477-Т. Всесоюзный государственный проектный институт «Теплопроект», Ленинградское отделение, 1965. 116 с.

12.4. Тепловое удлинение участка трубопровода определяют по формуле:

где l - тепловое удлинение участка трубопровода, мм; - средний коэффициент линейного расширения, принимаемый по табл. 18 в зависимости от температуры; l - длина участка трубопровода, м; t м - максимальная температура среды, °С; t н - расчетная температура наружного воздуха наиболее холодной пятидневки, °С; (для трубопроводов с отрицательной температурой среды t н - максимальная температура окружающего воздуха, °С; t м - минимальная температура среды, °С).

12.5. П-образные компенсаторы можно применять для технологических трубопроводов всех категорий. Их изготовляют либо гнутыми из цельных труб, либо с использованием гнутых, крутоизогнутых или сварных отводов; наружный диаметр, марку стали труб и отводов принимают такими же, как и для прямых участков трубопровода.

12.6. Для П-образных компенсаторов гнутые отводы следует применять только из бесшовных, а сварные - из бесшовных и сварных труб. Сварные отводы для изготовления П-образных компенсаторов допускаются в соответствии с указаниями п. 10.12 .

12.7. Применять водогазопроводные трубы по ГОСТ 3262- 75 для изготовления П-образных компенсаторов не разрешается, а электросварные со спиральным швом, указанные в табл. 5 , рекомендуются только для прямых участков компенсаторов.

12.8. П-образные компенсаторы должны быть установлены горизонтально с соблюдением необходимого общего уклона. В виде исключения (при ограниченной площади) их можно размещать вертикально петлей вверх или вниз с соответствующим дренажным устройством в низшей точке и воздушниками.

12.9. П-образные компенсаторы перед монтажом должны быть установлены на трубопроводах вместе с распорными приспособлениями, которые удаляют после закрепления трубопроводов на неподвижных опорах.

12.10. Линзовые компенсаторы, осевые, изготовляемые по ОСТ 34-42-309-76 - ОСТ 34-42-312-76 и ОСТ 34-42-325-77 - ОСТ 34-42-328-77, а также линзовые компенсаторы шарнирные, изготовляемые по ОСТ 34-42-313-76 - ОСТ 34-42-316-76 и ОСТ 34-42-329-77 - ОСТ 34-42-332-77 применяют для технологических трубопроводов, транспортирующих неагрессивные и малоагрессивные среды при давлении Р у до 1,6 МПа (16 кгс/см 2), температуре до 350 °С и гарантированном числе повторяющихся циклов не более 3000. Компенсирующая способность линзовых компенсаторов приведена в табл. 19 .

12.11. При установке линзовых компенсаторов на горизонтальных газопроводах с конденсирующимися газами для каждой линзы должен быть предусмотрен дренаж конденсата. Патрубок для дренажной трубы изготовляют из бесшовной трубы по ГОСТ 8732-78 или ГОСТ 8734-75 . При установке линзовых компенсаторов с внутренним стаканом на горизонтальных трубопроводах с каждой стороны компенсатора должны быть предусмотрены направляющие опоры.

12.12. Для увеличения компенсирующей способности компенсаторов допускается их предварительная растяжка (сжатие). Значение предварительной растяжки указывают в проекте, а при отсутствии данных ее можно принимать равной не более 50 %-ной компенсирующей способности компенсаторов.

12.13. Поскольку температура окружающего воздуха в период монтажа чаще всего превышает наименьшую температуру трубопровода, предварительную растяжку компенсаторов необходимо уменьшить на  попр , мм, которую определяют по формуле:

Где - коэффициент линейного расширения трубопровода, принимаемый по табл. 18 ; L 0 - длина участка трубопровода, м; t монт - температура при монтаже, °С; t min - минимальная температура при эксплуатации трубопровода, °С.

12.14. Пределы применения линзовых компенсаторов по рабочему давлению в зависимости от температуры транспортируемой среды устанавливают по ГОСТ 356-80 ; пределы применения их по цикличности приведены ниже:


Общее число циклов работы компенсатора за период эксплуатации

Компенсирующая способность линзы при толщине стенки, мм

2,5

3,0

4,0

300

5,0

4,0

3,0

500

4,0

3,5

2,5

1000

4,0

3,5

2,5

2000

2,8

2,5

2,0

3000

2,8

2,2

1,6

12.15. При установке шарнирных компенсаторов ось шарниров должна быть перпендикулярна плоскости изгиба трубопровода.

При сварке узлов шарнирного компенсатора предельные отклонения от соосности не должны превышать для условного прохода: до 500 мм - 2 мм; от 500 до 1400 мм - 3 мм; от 1400 до 2200 мм - 4 мм.

Несимметричность осей шарниров относительно вертикальной плоскости симметрии (вдоль оси трубопровода) должна быть для условного прохода не более: до 500 мм - 2 мм; от 500 до 1400 мм - 3 мм; от 1400 до 2200 мм - 5 мм.

12.16. Качество линзовых компенсаторов, подлежащих установке на технологических трубопроводах, должно подтверждаться паспортами или сертификатами.

12.17. Сильфонные осевые компенсаторы КО, угловые КУ, сдвиговые КС и универсальные КМ в соответствии с ОСТ 26-02-2079-83 применяют для технологических трубопроводов с условным проходом D y от 150 до 400 мм при давлении от остаточного 0,00067 МПа (5 мм рт. ст.) до условного Р у 6,3 МПа (63 кгс/см 2), при рабочей температуре от - 70 до + 700 °С.

12.18. Выбор типа сильфонного компенсатора, схема его установки и условия его применения должны быть согласованы с автором проекта или с ВНИИнефтемашем.

Варианты материального исполнения сильфонных компенсаторов приведены в табл. 20 , а их техническая характеристика - в табл. 21 - 30 .

12.19. Сильфонные компенсаторы необходимо монтировать в соответствии с инструкцией по монтажу и эксплуатации, входящей в комплект поставки компенсаторов.

12.20. В соответствии с ОСТ 26-02-2079-83 средний срок службы сильфонных компенсаторов до списания - 10 лет, средний ресурс до списания - 1000 циклов для компенсаторов КО-2 и КС-2 и 2000 - для компенсаторов остальных типов.

Средний ресурс до списания компенсаторов КС-1 при вибрации с амплитудой колебаний 0,2 мм и частоте, не превышающей 50 Гц, - 10000 ч.

Примечание. Под циклом работы компенсатора понимают «пуск - остановку» трубопровода для ремонта, освидетельствования, реконструкции и т. п., а также каждое колебание температурного режима работы трубопровода, превышающее 30 °С.

12.21. При ремонтных работах на участках трубопроводов с компенсаторами необходимо исключить: нагрузки, приводящие к скручиванию компенсаторов, попадание искр и брызг на сильфоны компенсаторов при сварочных работах, механические повреждения сильфонов.

12.22. При наработке 500 циклов для компенсаторов КО-2 и КС-2 и 1000 циклов для сильфонных компенсаторов остальных типов необходимо:

при эксплуатации на пожаро-взрывоопасных и токсичных средах заменить их новыми;

при эксплуатации на других средах техническому надзору предприятия принять решение о возможности их дальнейшей эксплуатации.

12.23. При установке компенсатора в паспорт трубопровода вносят следующие данные:

техническую характеристику, завод-изготовитель и год изготовления компенсатора;

расстояние между неподвижными опорами, необходимую компенсацию, предварительное растяжение;

температуру окружающего воздуха при монтаже компенсатора и дату.

190. Температурные деформации рекомендуется компенсировать за счет поворотов и изгибов трассы трубопроводов. При невозможности ограничиться самокомпенсацией (на совершенно прямых участках значительной протяженности и др.) на трубопроводах устанавливаются П-образные, линзовые, волнистые и другие компенсаторы.

В тех случаях, когда в проектной документации предусматривается продувка паром или горячей водой, рекомендуется рассчитывать на эти условия компенсирующую способность.

192. Рекомендуется применять П-образные компенсаторы для технологических трубопроводов всех категорий. Их рекомендуется изготавливать либо гнутыми из цельных труб, либо с использованием гнутых, крутоизогнутых или сварных отводов.

В случае предварительной растяжки (сжатия) компенсатора ее величину рекомендуется указывать в проектной документации.

193. Для П-образных компенсаторов гнутые отводы рекомендуется в целях безопасности изготавливать из бесшовных, а сварные - из бесшовных и сварных прямошовных труб.

194. Применять водогазопроводные трубы для изготовления П-образных компенсаторов не рекомендуется, а электросварные со спиральным швом - допускается для прямых участков компенсаторов.

195. В целях безопасности рекомендуется П-образные компенсаторы устанавливать горизонтально с соблюдением общего уклона. В обоснованных случаях (при ограниченной площади) их допускается размещать вертикально петлей вверх или вниз с соответствующим дренажным устройством в низшей точке и воздушниками.

196. П-образные компенсаторы перед монтажом рекомендуется устанавливать на трубопроводах вместе с распорными приспособлениями, которые удаляют после закрепления трубопроводов на неподвижных опорах.

197. Линзовые компенсаторы, осевые, а также линзовые компенсаторы шарнирные рекомендуется применять для технологических трубопроводов в соответствии с НТД.

198. При установке линзовых компенсаторов на горизонтальных газопроводах с конденсирующимися газами для каждой линзы рекомендуется в целях безопасности предусматривать дренаж конденсата. Патрубок для дренажной трубы рекомендуется в целях безопасности изготавливать из бесшовной трубы. При установке линзовых компенсаторов с внутренним стаканом на горизонтальных трубопроводах с каждой стороны компенсатора рекомендуется в целях безопасности устанавливать направляющие опоры на расстоянии не более 1,5 DN компенсатора.

199. При монтаже трубопроводов компенсирующие устройства рекомендуется в целях безопасности предварительно растягивать или сжимать. Величину предварительной растяжки (сжатия) компенсирующего устройства рекомендуется указывать в проектной документации и в паспорте на трубопровод. Величина растяжки может изменяться на величину поправки, учитывающей температуру при монтаже.

200. Качество компенсаторов, подлежащих установке на технологических трубопроводах, рекомендуется подтверждать паспортами или сертификатами.

201. При установке компенсатора в паспорт трубопровода рекомендуется вносить следующие данные:

Техническую характеристику, завод-изготовитель и год изготовления компенсатора;

Расстояние между неподвижными опорами, компенсацию, величину предварительного растяжения;

Температуру окружающего воздуха при монтаже компенсатора и дату установки.

202. Расчет П-образных, Г-образных и Z-образных компенсаторов рекомендуется производить в соответствии с требованиями НТД.

Теплопроводы системы отопления монтируют в «коробке» строящегося здания при различной температуре наружного воздуха. В весенне-осенний период эта температура близка к +5°С. В зимний период для удобства выполнения отделочных и монтажных работ в строящемся здании стремятся также поддерживать временными средствами положительную температуру.

Так как эксплуатация различных отопительных труб проводится при температуре теплоносителя от 30 до 150°C, стальные трубы удлиняются по сравнению с монтажной их длиной в большей или меньшей степени.

Температурное удлинение нагреваемой трубы - приращение ее длины Δl - определяется по формуле:

Δl=α*{t т -t н)l,

где α - коэффициент линейного расширения материала трубы (для мягкой стали в рассматриваемом интервале температуры близок к 1,2 10 -5);

t т - температура теплопровода, близкая к температуре теплоносителя, °C (при расчетах учитывается наивысшая температура);

tн - температура окружающего воздуха в период производства монтажных работ, °C;

l - длина отопительной трубы, м.

Δl=1,2*10 -2 *(t т -5)l, мм,

удобном для ориентировочных расчетов.

Можно установить, что при низкотемпературной воде 1 м подающей стальной трубы предельно удлиняется приблизительно на 1 мм, обратной трубы - на 0,8 мм, а при высокотемпературной воде и паре удлинение каждого метра трубы достигает 1,75 мм.

Очевидно, что это необходимо учитывать при конструировании системы отопления, особенно при высокотемпературном теплоносителе, и принимать меры для уменьшения усилий, возникающих при температурном удлинении подводок, стояков и магистралей.

Компенсация удлинения подводок к отопительным приборам предусматривается в горизонтальных однотрубных системах путем изгибов подводок (добавления уток) для того, чтобы напряжение на изгиб в отводах труб не превышало 78,5 МПа (800 кгс/см 2); между каждыми пятью-шестью приборами вставляют П-образные компенсаторы, которые рационально размещать в местах пересечения разводящей трубой внутренних стен и перегородок помещений.

В системах отопления с вертикальными стояками подводки к приборам в большинстве случаев выполняются без изгибов, однако в высоких зданиях возможен специальный изгиб подводок к одному или нескольким приборам для обеспечения беспрепятственного перемещения труб стояка при температурном удлинении.

При длинных гладкотрубных приборах, а также при установке нескольких приборов другого типа «на сцепке» необходимы такие же специальные изгибы подводок к ним для компенсации их температурного удлинения.
Игнорирование этого явления приводит при эксплуатации системы если не к излому труб и арматуры, то к возникновению течи в резьбовых соединениях.

Компенсация удлинения вертикальных стояков систем отопления малоэтажных зданий обеспечивается путем их изгиба в местах присоединения к подающим магистралям. В более высоких (4-7-этажных) зданиях вертикальные однотрубные стояки изгибают в местах присоединения не только к подающей, но и к обратной магистрали.

Изгибы труб для компенсации удлинения вертикальных стояков систем отопления зданий

а – одно - трехэтажных; б – четырех - семиэтажных; в - восьмиэтажных и более высоких.

В зданиях, имеющих более семи этажей, таких изгибов стояков недостаточно и для компенсации удлинения средней части вертикальных стояков применяют либо специальные П-образные компенсаторы, либо дополнительные изгибы труб, удаляя отопительные приборы от оси стояка. В этом случае трубы стояков между компенсаторами в отдельных точках закрепляют, устанавливая неподвижные опоры (так называемые «мертвые») для обеспечения перемещения труб в заданном направлении при изменении их температуры.

В местах пересечения междуэтажных перекрытий трубы заключают в гильзы для облегчения их перемещения при удлинении или при ремонте. При замоноличивании в панели стен трубы соединяют в разрывах между панелями с изгибами для компенсации усилий, возникающих при осадке зданий.

В вертикальной однотрубной системе для компенсации удлинения используют изгибы труб каждого этаже-стояка.

Для компенсации удлинения вертикальных главных стояков систем отопления многоэтажных зданий применяют П-образные компенсаторы, ширина и вылет которых определяются расчетом. Следует иметь в виду, что неподвижные опоры между компенсаторами в этом случае воспринимают не только силу упругости компенсатора, но и действие массы трубы с водой и изоляцией.

Компенсация удлинения магистралей выполняется прежде всего естественными их изгибами, обусловленными планировкой конкретного здания, и только прямые магистрали значительной длины, особенно при высокотемпературном теплоносителе, снабжаются П-образными компенсаторами.

размер шрифта

ПОСТАНОВЛЕНИЕ Госгортехнадзора РФ от 10-06-2003 80 ОБ УТВЕРЖДЕНИИ ПРАВИЛ УСТРОЙСТВА И БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ ТЕХНОЛОГИЧЕСКИХ... Актуально в 2018 году

5.6. Компенсация температурных деформаций трубопроводов

5.6.1. Температурные деформации следует компенсировать за счет поворотов и изгибов трассы трубопроводов. При невозможности ограничиться самокомпенсацией (например, на совершенно прямых участках значительной протяженности) на трубопроводах устанавливаются П-образные, линзовые, волнистые и другие компенсаторы.

В тех случаях, когда проектом предусматривается продувка паром или горячей водой, компенсирующая способность трубопроводов должна быть рассчитана на эти условия.

5.6.2. Не допускается применять сальниковые компенсаторы на технологических трубопроводах, транспортирующих среды групп А и Б.

Не допускается установка линзовых, сальниковых и волнистых компенсаторов на трубопроводах с условным давлением свыше 10 МПа (100 кгс/см2).

5.6.3. П-образные компенсаторы следует применять для технологических трубопроводов всех категорий. Их изготавливают либо гнутыми из цельных труб, либо с использованием гнутых, крутоизогнутых или сварных отводов.

5.6.4. Для П-образных компенсаторов гнутые отводы следует применять только из бесшовных, а сварные - из бесшовных и сварных прямошовных труб. Применение сварных отводов для изготовления П-образных компенсаторов допускается в соответствии с указаниями п. 2.2.37 настоящих Правил.

5.6.5. Применять водогазопроводные трубы для изготовления П-образных компенсаторов не допускается, а электросварные со спиральным швом рекомендуются только для прямых участков компенсаторов.

5.6.6. П-образные компенсаторы должны быть установлены горизонтально с соблюдением необходимого общего уклона. В виде исключения (при ограниченной площади) их можно размещать вертикально петлей вверх или вниз с соответствующим дренажным устройством в низшей точке и воздушниками.

5.6.7. П-образные компенсаторы перед монтажом должны быть установлены на трубопроводах вместе с распорными приспособлениями, которые удаляют после закрепления трубопроводов на неподвижных опорах.

5.6.8. Линзовые компенсаторы, осевые, а также линзовые компенсаторы шарнирные применяются для технологических трубопроводов в соответствии с нормативно-технической документацией.

5.6.9. При установке линзовых компенсаторов на горизонтальных газопроводах с конденсирующимися газами для каждой линзы должен быть предусмотрен дренаж конденсата. Патрубок для дренажной трубы изготавливают из бесшовной трубы. При установке линзовых компенсаторов с внутренним стаканом на горизонтальных трубопроводах с каждой стороны компенсатора должны быть предусмотрены направляющие опоры на расстоянии не более 1,5 Ду компенсатора.

5.6.10. При монтаже трубопроводов компенсирующие устройства должны быть предварительно растянуты или сжаты. Величина предварительной растяжки (сжатия) компенсирующего устройства указывается в проектной документации и в паспорте на трубопровод. Величина растяжки может изменяться на величину поправки, учитывающей температуру при монтаже.

5.6.11. Качество компенсаторов, подлежащих установке на технологических трубопроводах, должно подтверждаться паспортами или сертификатами.

5.6.12. При установке компенсатора в паспорт трубопровода вносят следующие данные:

техническую характеристику, завод-изготовитель и год изготовления компенсатора;

расстояние между неподвижными опорами, необходимую компенсацию, величину предварительного растяжения;

температуру окружающего воздуха при монтаже компенсатора и дату.

5.6.13. Расчет П-образных, Г-образных и Z-образных компенсаторов следует производить в соответствии с требованиями нормативно-технической документации.



Понравилась статья? Поделитесь ей