Контакты

Скорость воды в отопительной системе. Физические параметры и скорости движения теплоносителей

Для того, чтобы система водяного отопления правильно фунциклировала необходимо обеспечить нужную скорость теплоносителя в системе. Если скорость будет маленькая, обогрев помещения будет очень медленный и дальние радиаторы будут значительно холоднее ближних. Наоборот, если же скорость теплоносителя будет слишком большой, то сам теплоноситель не будет успевать нагреваться в котле, температура всей системы отопления будет ниже. Добавится и уровень шума. Как видим скорость теплоносителя в системе отопления – очень важный параметр. Разберёмся же подробнее – какая должна быть самая оптимальная скорость.

Системы отопления где происходит естественная циркуляция, как правило, имеют сравнительно низкую скорость теплоносителя. Перепад давления в трубах достигается правильным расположением котла, расширительного бачка и самих труб – прямых и обратки. Только правильный расчёт перед монтажом, позволяет добиться правильного, равномерного движения теплоносителя. Но всё равно инерционность отопительных систем с естественной циркуляцией жидкости очень большая. Результат – медленный прогрев помещений, маленький КПД. Главный плюс такой системы – это максимальная независимость от электроэнергии, нет электрических насосов.

Чаще всего в домах используется система отопления с принудительной циркуляцией теплоносителя. Основным элементом такой системы является циркуляционный насос. Именно он ускоряет движение теплоносителя, от его характеристик зависит скорость жидкости в системе отопления.

Что влияет на скорость теплоносителя в системе отопления:

Схема системы отопления,
- вид теплоносителя,
- мощность, производительность циркуляционного насоса,
- из каких материалов изготовлены трубы и их диаметр,
- отсутствие воздушных пробок и засоров в трубах и радиаторах.

Для частного дома наиболее оптимальным будет скорость теплоносителя в пределах 0,5 – 1,5 м/с.
Для административно-бытовых зданиях – не более 2 м/с.
Для производственных помещений – не более 3 м/с.
Верхний предел скорости теплоносителя выбирается, в основном, из-за уровня шума в трубах.

Многие циркуляционные насосы имеют регулятор скорости потока жидкости, так что возможно подобрать наиболее оптимальную именно для вашей системы. Правильно нужно выбирать и сам насос. Не надо брать с большим запасом мощности, так как будет большее потребление электроэнергии. При большой протяжённости системы отопления, большом количестве контуров, этажности и так далее лучше устанавливать несколько насосов меньшей производительности. Например, отдельно поставить насос на тёплый пол, на второй этаж.

Скорость воды в системе отопления
Скорость воды в системе отопления Для того, чтобы система водяного отопления правильно фунциклировала необходимо обеспечить нужную скорость теплоносителя в системе. Если скорость будет маленькая,

Скорость движения воды в трубах системы отопления.

Thượng Tá Quân Đội Nhân Dân Việt Nam

Ох и дурют там вашего брата!
Ты чего хочешь-то? «Военную тайну» (как на самом деле надо делать) узнать, или курсовик сдать? Если только курсовик — то по методичке, которую преподаватель и написал и ничего иного не знает и знать не хочет. И если сделаешь как надо , еще и не примет.

1. Есть минимальная скорость движения воды. Это 0.2-0.3 м/с, из условия удаления воздуха.

2. Есть максимальная скорость, которая ограничивается, чтобы трубы не шумели. Теоретически это надо расчетом проверять и некоторые программы это делают. Практически же знающие люди пользуются указаниями старинного СНиП еще 1962 года, где была таблица предельных скоростей. Оттуда и по всем справочникам разошлось. Это 1,5 м/с при диаметре 40 и более, 1 м/с для диаметра 32, 0,8 м/с для диаметра 25. Для более мелких диаметров были другие ограничения но потом на них наплевали.

Допустимая скорость и теперь есть в пукте 6.4.6 (аж до 3 м/с) и в приложении Ж СНиП 41-01-2003, только «доценты с кандидатами» постарались, чтобы бедные студенты не смогли разобраться. Там и к уровню шума привязано, и к кмс и к прочей хрени.

Но допустимая — это совсем не оптимальная. Про оптимальную в СНиП вообще не упоминается.

3. Но все-таки есть и оптимальная скорость. Не какая-то 0,8-1,5, а самая настоящая. Вернее, не сама скорость, а оптимальный диаметр трубы (скорость-то не сама важна), причем с учетом всех факторов, включая металлоемкость, трудоемкость монтажа, комплектации да и гидравлической устойчивости.

Вот секретные формулы:

0.037*G^0.49 — для сборных магистралей
0.036*G^0.53 — для стояков отопления
0.034*G^0.49 — для ммагистралей ветки, пока нагрузка не уменьшится до 1/3
0.022*G^0.49 — для концевых участков ветки с нагрузкой в 1/3 от всей ветки

Здесь везде G — расход в т/ч, а получается внутренний диаметр в метрах, который надо округлить до ближайшего большего стандартного.

Ну, а правильные пацаны вообще никакими скоростями не задаются, а просто делают в жилых домах все стояки постоянного диаметра и все магистрали постоянного диаметра. Но тебе еще рано знать, какие именно диаметры.

Скорость движения воды в трубах системы отопления
Скорость движения воды в трубах системы отопления. Отопление


Гидравлический расчёт трубопроводов системы отопления

Как видно из названия темы в расчёте участвуют такие параметры, связанные с гидравликой, как расход теплоносителя, скорость потока теплоносителя, гидравлическое сопротивление трубопроводов и арматуры. При этом между указанными параметрами существует полная взаимосвязь.

Например при увеличении скорости теплоносителя увеличивается гидравлическое сопротивление трубопровода. При увеличении расхода теплоносителя через трубопровод определённого диаметра скорость теплоносителя возрастает и естественно растёт гидравлическое сопротивление при этом изменяя диаметр в большую сторону скорость и гидравлическое сопротивление снижаются. Анализируя эти взаимосвязи гидравлический расчёт превращается в своего рода анализ параметров для обеспечения надёжной и эффективной работы системы и снижения затрат на материалы.

Система отопления состоит из четырёх основных компонентов это трубопроводы, отопительные приборы, теплогенератор, регулирующая и запорная арматура. Все элементы системы имеют свои характеристики гидравлического сопротивления и должны учитываться при расчёте. При этом, как было сказано выше, гидравлические характеристики не являются постоянными. Производители отопительного оборудования и материалов обычно приводят данные по гидравлическим характеристикам (удельные потери давления) на производимое ими материалы или оборудование.

Номограмма для гидравлического расчёта полипропиленовых трубопроводов производства фирмы FIRAT (Фират)

Удельные потери давления (потеря напора) трубопровода указано для 1 м.п. трубы.

Проанализировав номограмму вы более наглядно увидите ранее указанные взаимосвязи между параметрами.

Итак суть гидравлического расчёта мы определили.

Теперь пройдёмся отдельно по каждому из параметров.

Расход теплоносителя

Расход теплоносителя, для более широкого понимания количество теплоносителя, напрямую зависит от тепловой нагрузки которую теплоноситель должен переместить от теплогенератора к отопительному прибору.

Конкретно для гидравлического расчёта требуется определить расход теплоносителя на заданном расчётном участке. Что такое расчётный участок. Расчетным участком трубопровода принимается участок постоянного диаметра с неизменным расходом теплоносителя. Например если в состав ветки входят десять радиаторов (условно каждый прибор мощностью 1 кВт) а общий расход теплоносителя рассчитан на перенос теплоносителем тепловой энергии равной 10 кВт. То первым участком будет участок от теплогенератора до первого в ветке радиатора (при условии что по всему участку постоянный диаметр) с расходом теплоносителя на перенос 10 кВт. Второй участок будет находится между первым и вторым радиатором с расходом на перенос тепловой энергии 9 кВт и так далее вплоть до последнего радиатора. Рассчитывается гидравлическое сопротивление как подающего трубопровода так и обратного.

Расход теплоносителя (кг/час) для участка рассчитывается по формуле:

Q уч — тепловая нагрузка участка Вт. Например для вышеуказанного примера тепловая нагрузка первого участка равна 10 кВт или 1000 Вт.

с = 4,2 кДж/(кг·°С) — удельная теплоемкость воды

t г — расчетная температура горячего теплоносителя в системе отопления, °С

t о — расчетная температура охлажденного теплоносителя в системе отопления, °С.

Скорость потока теплоносителя.

Минимальный порог скорости теплоносителя рекомендуют принимать в пределах 0,2 — 0,25 м/с. На меньших скоростях начинается процесс выделения избыточного воздуха содержащегося в теплоносителе что может приводить к образованию воздушных пробок и как следствие полный либо частичный отказ работы системы отопления. Верхний порог скорости теплоносителя лежит в диапазоне 0,6 — 1,5 м/с. Соблюдение верхнего порога скорости позволяет избежать возникновение гидравлических шумов в трубопроводах. На практике было определён оптимальный диапазон скорости 0,3 — 0,7 м/с.

Более точный диапазон рекомендованной скорости теплоносителя зависит от материала трубопроводов применяемых в системе отопления а точнее от коэффициента шероховатости внутренней поверхности трубопроводов. Например для стальных трубопроводов лучше придерживаться скорости теплоносителя от 0,25 до 0,5 м/с для медных и полимерных (полипропиленовые, полиэтиленовые, металлопластиковые трубопроводы) от 0,25 до 0,7 м/с либо воспользоваться рекомендациями производителя при их наличии.

Скорость потока теплоносителя
Скорость потока теплоносителя. Гидравлический расчёт трубопроводов системы отопления Как видно из названия темы в расчёте участвуют такие параметры, связанные с гидравликой, как расход


Скорость — движение — теплоноситель

Скорости движения теплоносителей в технологических аппаратах обычно обеспечивают турбулентный режим движения потоков, при котором, как известно, происходит интенсивный обмен количеством движения, энергией и массой между соседними участками потока за счет хаотических турбулентных пульсаций. По физической сущности турбулентный перенос теплоты является конвективным переносом.

Скорости движения теплоносителя в трубопроводах систем отопления с естественной циркуляцией обычно составляют 0 05 — 0 2 м / с, а при искусственной циркуляции — 0 2 — 1 0 м / с.

Скорость движения теплоносителя влияет на скорость сушки кирпича. Из приведенных исследований следует, что ускорение сушки кирпича яри увеличении скорости движения теплоносителя более заметно, когда эта скорость больше 0 5 м / сек. В первый же период сушки значительное повышение скорости движения теплоносителя сказывается губительным для качества кирпича, если теплоноситель недостаточно влажный.

Скорость движения теплоносителя в трубках теплоутилизаторов должна быть во всех режимах эксплуатации не менее 0 35 м / с при теплоносителе воде и не менее 0 25 м / с при незамерзающем теплоносителе.

Скорости движения теплоносителя в системах отЬпления определяют гидравлическим расчетом и экономическими соображениями.

Скорость движения теплоносителей, определяемая сечением каналов теплообменного аппарата, колеблется в очень широких пределах и без большой погрешности не может быть принята или установлена до решения вопроса о типе и размерах теплообменного аппарата.

Скорость движения теплоносителя w сильно влияет на теплоотдачу. Чем выше скорость, тем интенсивнее протекает теплообмен.

Скорость движения теплоносителя в сушильном канале не должна превышать 5 — 6 м / мин во избежание образования бугристой поверхности рабочего слоя и чрезмерно напряженной структуры. Практически скорость теплоносителя выбирают в пределах 2 — 5 м / мин.

Скорость движения теплоносителя в водяных системах отопления допускается до 1 — 1 5 м / с в жилых и общественных зданиях и до 3 м / с в производственных по мещениях.

Увеличение скорости движения теплоносителя выгодно только до определенного предела. Если эта скорость будет выше оптимальной, газы не успеют отдать материалу полностью свое тепло и выйдут из барабана с высокой температурой.

Увеличение скорости движения теплоносителя может быть достигнуто и в элементных (батарейных) теплообменниках, представляющих собой батарею из нескольких последовательно соединенных друг с другом теплообменников.

С увеличением скорости движения теплоносителей увеличиваются Re w / / v, коэффициент теплоотдачи а и плотность теплового потока q a At. Однако вместе со скоростью пропорционально w2 растет гидравлическое сопротивление и расход мощности на насосы, прокачивающие теплоноситель через теплообменный аппарат. Существует оптимальное значение скорости, определяемое сопоставлением увеличения интенсивности теплообмена и более интенсивного роста гидравлических сопротивлений с увеличением скорости.

Для повышения скорости движения теплоносителя в межтрубном пространстве устраивают продольные и поперечные перегородки.

Большая Энциклопедия Нефти и Газа
Большая Энциклопедия Нефти и Газа Скорость — движение — теплоноситель Скорости движения теплоносителей в технологических аппаратах обычно обеспечивают турбулентный режим движения потоков, при

Расчет будет рассматриваться на системах с принудительной вентиляцией. В таковых системах движение теплоносителя обеспечивает постоянно работающий циркуляционный насос . Когда выбирается диаметр труб, учитывается, что главная их задача – обеспечение доставки нужного количества тепла к приборам обогрева.

Данные: как рассчитать диаметр трубы для отопления

Для расчета диаметра трубопровода понадобятся такие данные: это и общие теплопотери жилища, и протяженность трубопровода, и расчет мощности радиаторов каждой комнаты, а также способ разводки. Развода может быть однотрубной, двухтрубной, иметь принудительную или естественную вентиляцию.

Также обратите внимание на маркировку у медных и полипропиленовых труб наружного диаметра. Внутренний же можно вычислить, отняв толщину стенки. У металлопластиковых и стальных труб внутренний размер проставляется при маркировке.

К сожалению, рассчитать точно сечение труб невозможно. Так или иначе, а придется выбирать вам из пары вариантов. Этот момент стоит пояснить: к радиаторам нужно доставить определенное количество тепла, добившись при этом равномерного нагрева батарей. Если речь идет о системах с принудительной вентиляцией, то делается это при помощи труб, насоса и самого теплоносителя. Все, что нужно – это прогнать за некий временной промежуток нужное количество теплоносителя.

Получается, что можно выбрать трубы меньшего диаметра, и теплоноситель подавать с большей скоростью. Можно сделать также выбор в пользу труб большего сечения, но интенсивность подачи теплоносителя уменьшить. Предпочтителен первый вариант.

Выбор скорости воды в системе отопления

Большая скорость воды и трубы меньшего диаметра – это наиболее частый выбор. Если увеличить диаметр трубы, то уменьшится скорость движения. Но последний вариант не так част, уменьшение движения не очень выгодно.


Почему высокая скорость и меньший диаметр трубы выгоднее:

  • Изделия меньшего диаметра стоят меньше;
  • Работать с трубами меньшего диаметра в домашних условиях проще;
  • Если прокладка открытая, они не так сильно привлекают внимание, а если укладка идет в стены или пол, то потребуются штробы меньшие по размеру;
  • Небольшой диаметр обеспечивает меньшее количество теплоносителя в трубе, а это, в свою очередь, снижает инерционность системы, что экономит топливо.

Разработаны специальные таблицы, по которых определяется размер труб для дома. Такая таблица учитывает требуемое количество тепла, а также скорость движения теплоносителя, а также температурные показатели работы системы. Получается, чтобы осуществить подбор труб нужного сечения, находится необходимая таблица, и по ней подбирается диаметр. Сегодня может найтись и подходящая онлайн-программа, которая заменяет таблицу.

Схема разводки отопительной системы и диаметр труб для отопления

Схема разводки отопления всегда учитывается. Она может быть двухтрубной вертикальной, двухтрубной горизонтальной и однотрубной. Двухтрубная система предполагает как верхнее, так и нижнее размещение магистралей. А вот однотрубная система учитывает экономное использование длины магистралей, таковая подходит для отопления с естественной циркуляцией. Тогда двухтрубная потребуют обязательного включения насоса в схему.

Горизонтальная разводка бывает трех типов:

  • Тупиковая;
  • Лучевая или коллекторная;
  • С параллельным движением воды.

К слову, в схеме однотрубной системы может быть и так называемая обходная труба. Она станет дополнительной магистралью для циркуляции жидкости, если отключился один или несколько радиаторов. Обычно на всякий радиатор устанавливаются запорные краны, которые позволяют перекрыть водную подачу в случае необходимости.

Какие могут быть последствия: заужение диаметра трубы отопления

Заужение диаметра трубы крайне нежелательно. Когда происходит разводка по дому, рекомендовано использовать одинаковый типоразмер – увеличить или уменьшить его не стоит. Возможным исключением будет только большая длина циркуляционного контура. Но и в этом случае нужно быть внимательным.


Но почему же при замене стальной трубы на пластиковую заужается размер? Здесь все просто: при одинаковом внутреннем диаметре наружный же диаметр самих пластиковых труб больше. А значит отверстия в стенах и перекрытиях придется расширять, причем, серьезно – с 25 до 32 мм. А ведь для этого будет нужен специнструмент. Потому проще в эти отверстия пропустить трубы потоньше.

Но в этой же ситуации получается, что жильцы, которые произвели такую замену труб, на автоматике «украли» у своих соседей по данному стояку примерно 40% тепла и воды, проходящие по трубам. Потому стоит понимать, что толщина труб, самовольно заменяемая в тепловой системе – не вопрос частного решения, делать этого нельзя. Если стальные трубы меняются на пластиковые, расширять отверстия в перекрытиях, как ни крути, а придется.

Есть и такой вариант в данной ситуации. Можно при замене стояков в старые отверстия пропустить новые отрезочки стальных труб того же диаметра, длина их будет 50-60 см (это зависит от такого параметра, как толщина перекрытия). А потом они соединяются муфтами с пластиковыми трубами. Этот вариант вполне приемлем.

Правильный расчет диаметра трубы для отопления (видео)

Если вы некомпетентны в вопросах расчета диаметра труб, обратки, схем и выбора теплоносителя, лучше позвать специалистов, попросить их прокомментировать свою работу.

Система отопления с естественной циркуляцией – это система, в которой теплоноситель движется под воздействием силы тяжести и благодаря расширению воды при повышении ее температуры. Насос отсутствует.

Работает система отопления с естественной циркуляцией так. Определенный объем теплоносителя нагревается в котле. Нагретая вода расширяется и поднимается наверх (поскольку ее плотность ниже, чем у холодной воды) до самой верхней точки отопительного контура.

Она самотеком движется по контуру, постепенно отдавая свое тепло трубам и отопительным приборам – при этом, естественно, остывая сама. Совершив полный круг, вода возвращается назад к котлу. Цикл повторяется.

Такая система является саморегулирующейся, а также самотечной, или гравитационной: скорость движения теплоносителя зависит от температуры в доме. Чем холоднее, тем он быстрее движется. Это происходит потому, что напор зависит от разницы в плотности воды, выходящей из котла, и ее плотности в «обратке». Плотность зависит от температуры: вода остывает (а чем холоднее в доме, тем быстрее это происходит), плотность увеличивается, скорость вытеснения нагретой воды (с меньшей плотностью) возрастает.

Кроме того, напор зависит от того, на сколько по высоте отстоят котел и нижний радиатор: чем ниже котел, тем быстрее вода переливается в обогреватель (по принципу сообщения сосудов).

Плюсы и минусы самотечных систем

Реализация отопления с естественной циркуляцией

Такие системы очень популярны для квартир, в которых реализована автономная система отопления, и одноэтажных загородных домов небольшого метража ().

Положительным фактором является отсутствие в контуре подвижных элементов (в том числе насоса) – это, а также то, что контур замкнут (и, следовательно, соли металлов, взвеси и прочие нежелательные примеси в теплоносителе имеются в постоянном количестве), увеличивают срок службы системы. Особенно если вы будете применять полимерные, металлопластиковые или оцинкованные трубы и , она может прослужить 50 и более лет.

Они дешевле систем с принудительной циркуляцией (как минимум – на стоимость насоса) в сборке и в эксплуатации.

Естественная циркуляция воды в системе отопления означает сравнительно маленький перепад. К тому же и трубы, и отопительные приборы из-за трения оказывают сопротивление движущейся воде.

Исходя из этого, отопительный контур должен иметь радиус порядка 30 метров (или немногим больше). Разнообразные повороты и ответвления увеличивают сопротивление и, следовательно, уменьшают допустимый радиус контура.

Такой контур является высокоинерционным: от момента запуска котла и до прогрева помещений проходит достаточно много времени — до нескольких часов.

Чтобы система функционировала нормально, условно горизонтальные участки труб должны иметь наклон по ходу течения теплоносителя. Воздушные пробки () в таком контуре все собираются в самой верхней точке системы. Там монтируют герметичный либо открытый расширительный бачок.

Закипает вода чаще в системе отопления самотечного типа. Например, в случае применения открытого расширительного бачка порой бывает недостаточно воды в системе, а также если трубы имеют слишком маленький диаметр или слишком маленький уклон (из-за этого уменьшается скорость теплоносителя). Также это может произойти из-за завоздушивания.

Скорость движения воды в самотечном контуре

Скорость воды в системе отопления определяется рядом факторов:

  • Напором теплоносителя.
  • Диаметром труб ().
  • Количеством поворотов и их радиусом, Оптимально – минимальное количество поворотов (лучше всего вообще по прямой, а если они все-таки есть – то с большим радиусом).
  • Запорной арматурой: ее количеством и типом.
  • Материалом, из которого выполнены трубы. Наибольшее сопротивление оказывает сталь: чем больше на ней отложений, тем выше сопротивление, оцинкованная сталь – меньше, полипропилен – еще меньше, .

Принудительная циркуляция

Принципиальная схема, поясняющая работу принудительной циркуляции

Система отопления с принудительной циркуляцией – это система, в которой используется насос: вода движется под воздействием давления, оказываемого им.

Система отопления с принудительной циркуляцией имеет такие преимущества перед гравитационной:

  • Циркуляция в системе отопления происходит с гораздо большей скоростью, и, следовательно, прогрев помещений осуществляется быстрее.
  • Если в самотечной системе радиаторы прогреваются по-разному (в зависимости от их удаленности от котла), то в насосной они нагреваются одинаково.
  • Можно регулировать нагрев каждого участка отдельно, перекрывать отдельные сегменты.
  • Схема монтажа является более легко модифицируемой.
  • Не образуется завоздушенность.

Недостатки у такой системы также имеютcя:

  1. Она дороже в монтаже: в отличие от гравитационной модели, нужно прибавить стоимость насоса и стоимость запорной арматуры для его отсечения.
  2. Она менее долговечна.
  3. Зависит от снабжения электроэнергией. Если у вас случаются перебои с ее подачей, необходимо обзавестись источником бесперебойного питания.
  4. Она дороже в эксплуатации, так как насосное оборудование потребляет электроэнергию.

Выбор и монтаж насоса

Чтобы выбрать насос, нужно учесть целый ряд факторов:

  • Какой именно теплоноситель будет использоваться, какой будет его температура.
  • Длина магистрали, материал труб и их диаметр.
  • Сколько радиаторов (и каких именно – чугунных, алюминиевых и т.д.) будет подключено, каков будет их размер.
  • Количество и виды запорной арматуры.
  • Будет ли автоматическое регулирование, и как именно оно будет организовано.

При монтаже насоса на «обратке» продлевается срок службы всех частей контура. Перед ним также желательно установить фильтр для предотвращения поломки крыльчатки.

Перед установкой насос обезвоздушивают.

Выбор теплоносителя

В качестве теплоносителя может использоваться вода, а также один из антифризов:

  • Этиленгликоль. Токсичное вещество, которое может привести к летальному исходу. Поскольку протечки все же полностью исключить нельзя – лучше его не использовать.
  • Водные растворы глицерина. Их использование требует применения более качественных уплотнительных элементов, деталей из неполярных резин, некоторых видов пластмасс;. Может потребоваться установка дополнительного насоса. Вызывает повышенную коррозию металла. В местах нагрева до высоких температур (в районе горелки котла) возможно образование ядовитого вещества – акролеина.
  • Пропиленгликоль. Это вещество нетоксично, мало того, оно используется в качестве пищевой добавки. На его основе изготавливаются эко-антифризы.

Проектные расчеты всех отопительных контуров базируются на применении воды. В случае применения антифриза следует пересчитать все параметры, поскольку антифриз в 2-3 раза более вязкий, имеет гораздо больше объемное расширение, меньшую теплоемкость. Это означает, что требуются гораздо более мощные (примерно на 40% — 50 %) радиаторы, большая мощность котла, напор насоса.

При превышении температуры антифриза он разлагается. При этом образуются кислоты, вызывающие коррозию металла, и твердые осадки, оседающие на стенках труб и внутри радиаторов и ухудшающие движение теплоносителя.

Антифризы также склонны к протечкам, они являются бичом систем с большим количеством резьбовых соединений. Его применение обосновано в том случае, если система отопления может надолго оставаться без присмотра в морозные дни.

Обычную воду в качестве теплоносителя также не рекомендуется использовать: она насыщена солями и кислородом, что приводит к образованию накипи и к коррозии труб и радиаторов.

Обязательно дополнительно прочтите . В этом вопросе нет мелочей, а нюансов – очень много.

Подготовка воды для системы отопления заключается в ее умягчении ().

Это происходит следующим образом:

  • Кипячением: углекислый газ улетучивается, некоторые из солей (но не соединения магния и кальция) выпадают в осадок;
  • Использованием химических веществ, умягчитель воды для системы отопления – это ортофосфат магния, гашеная известь, кальцинированная сода. Все соли становятся нерастворимыми и выпадают в осадок, для устранения остатков которого воду нужно подвергнуть фильтрации.
  • Дистиллированная вода в системе отопления является идеальным вариантом.


Надеемся, что разница между естественной и принудительной циркуляций вам понятна. И вы выберете оптимальный для себя тип системы отопления.

Будем благодарны, если нажмете на кнопки социальных сетей. Пусть и другие почитают этот материал. Приглашаем вас также вступить в нашу группу в сети Вконтакте. До встречи!

Методика расчета теплообменных аппаратов

Конструкции теплообменных аппаратов весьма разнообразны, однако существует общая методика теплотехнических расчетов, которую можно применять для частных расчетов в зависимости от имеющихся исходных данных.

Существуют два вида теплотехнических расчетов теплообменных аппаратов: конструкторский (проектный) и поверочный.

Конструкторский расчет производится при проектировании теплообменного аппарата, когда заданы расходы теплоносителей и их параметры. Цель конструкторского расчета определение поверхности теплообмена и конструктивных размеров выбранного аппарата.

Поверочный расчет выполняется для выявления возможности использования имеющихся или стандартных теплообменных аппаратов для тех технологических процессов, в которых используется данный аппарат. При поверочном расчете заданы размеры аппарата и условия его работы, а неизвестной величиной является производительность теплообменного аппарата (фактическая). Поверочный расчет производят для оценки работы аппарата при режимах, отличных от номинальных. Таким. образом, целью поверочного расчета является выбор условий, обеспечивающих оптимальный режим работы аппарата.

Конструкторский расчет состоит из теплового (теплотехнического), гидравлического и механического расчетов.

Последовательность конструкторского расчета . Для выполнения расчета должно быть задано: 1) тип теплообменного аппарата (змеевиковый, кожухотрубчатый, труба в трубе, спиральный и др.); 2) наименование нагреваемого и охлаждаемого теплоносителей (жидкость, пар или газ); 3) производительность теплообменного аппарата (количество одного из теплоносителей, кг/с); 4) начальные и конечные температуры теплоносителей.

Требуется определить: 1) физические параметры и скорости движения теплоносителей; 2) расход нагревающего или охлаждающего теплоносителя на основании теплового баланса; 3) движущую силу процесса, т.е. среднюю разность температур; 4) коэффициенты теплоотдачи и теплопередачи; 5) поверхность теплопередачи; 6) конструктивные размеры аппарата: длину, диаметр и число витков змеевика, длину, число труб и диаметр кожуха в кожухотрубчатом аппарате, число витков и диаметр корпуса в спиральном теплообменнике и др.; 7) диаметры штуцеров для входа и выхода теплоносителей.

Теплопередача между теплоносителями существенно изменяется в зависимости от физических свойств и параметров теплообменивающихся сред, а также от гидродинамических условий движения теплоносителей.

В задании на проектирование заданы рабочие среды (теплоносители), начальные и конечные их температуры. Нужно определить среднюю температуру каждой среды и при этой температуре найти по справочным таблицам значения их физических параметров.


Среднюю температуру среды можно приближенно определить как среднее арифметическое из начальной t н и конечной t к температур.

Основными физическими параметрами рабочих сред являются: плотность, вязкость, удельная теплоемкость, коэффициент теплопроводности, температура кипения, скрытая теплота испарения или конденсации и др.

Эти параметры представлены в виде таблиц, диаграмм, монограмм в справочниках .

При конструировании теплообменной аппаратуры надо стремиться к созданию таких скоростей потоков теплоносителей (их рабочих сред), при которых коэффициенты теплоотдачи и гидравлические сопротивления были бы экономически выгодными.

Выбор целесообразной скорости имеет большое значение для хорошей работы теплообменного аппарата, так как с увеличением скорости значительно возрастают коэффициенты теплоотдачи и уменьшается поверхность теплообмена, т.е. аппарат имеет меньшие конструктивные размеры. Одновременно с повышением скорости увеличивается гидравлическое сопротивление аппарата, т.е. расход электроэнергии на привод насоса, а также опасность гидравлического удара и вибрации труб. Минимальное значение скорости определяется достижением турбулентного движения потока {для легко подвижных, маловязких жидкостей критерий Рейнольдса Rе > 10000).

Средняя скорость движения среды определяется из уравнений объемного и массового расходов:

М/с; , кг/(м 2 с), (9.1)

где – средняя линейная скорость, м/с; V – объемный рас ход, м 3 /с; S – площадь сечения потока, м 2 ; – средняя массовая скорость, кг/(м 2 /с); G – массовый расход, кг/с.

Зависимость между массовой и линейной скоростью:

, (9.2)

где – плотность среды, кг/м 3 .

Для применяемых диаметров труб (57, 38 и 25 мм) рекомендуется принимать скорость жидкостей практически 1,5 - 2 м/с, не выше 3 м/с, низший предел скорости для большинства жидкостей составляет 0,06 - 0,3 м/с. Скорость, соответствующая Rе = 10000, для маловязких жидкостей в большинстве случаев не превышает 0,2 - 0,3 м/с. Для вязких жидкостей турбулентность потока достигается при значительно больших скоростях, поэтому при расчетах приходится допускать слаботурбулентный или даже ламинарный режим.

Для газов при атмосферном давлении допускаются массовые скорости 15 - 20 кг/(м 2 с), низший предел 2 - 2,5 кг/(м 2 с), а линейные скорости до 25 м/с; для насыщенных паров при конденсации рекомендуется задаваться скоростью до 10 м/с.

Скорости движения рабочих сред в патрубках штуцеров: для насыщенного пара 20 – 30 м/с; для перегретого пара – до 50 м/с; для жидкостей – 1,5 - 3 м/с; для конденсата греющего пара – 1 - 2 м/с.

Гидравлический расчёт трубопроводов системы отопления

Как видно из названия темы в расчёте участвуют такие параметры, связанные с гидравликой, как расход теплоносителя, скорость потока теплоносителя, гидравлическое сопротивление трубопроводов и арматуры. При этом между указанными параметрами существует полная взаимосвязь.

Например при увеличении скорости теплоносителя увеличивается гидравлическое сопротивление трубопровода. При увеличении расхода теплоносителя через трубопровод определённого диаметра скорость теплоносителя возрастает и естественно растёт гидравлическое сопротивление при этом изменяя диаметр в большую сторону скорость и гидравлическое сопротивление снижаются. Анализируя эти взаимосвязи гидравлический расчёт превращается в своего рода анализ параметров для обеспечения надёжной и эффективной работы системы и снижения затрат на материалы.

Система отопления состоит из четырёх основных компонентов это трубопроводы, отопительные приборы, теплогенератор, регулирующая и запорная арматура. Все элементы системы имеют свои характеристики гидравлического сопротивления и должны учитываться при расчёте. При этом, как было сказано выше, гидравлические характеристики не являются постоянными. Производители отопительного оборудования и материалов обычно приводят данные по гидравлическим характеристикам (удельные потери давления) на производимое ими материалы или оборудование.

Например:

Номограмма для гидравлического расчёта полипропиленовых трубопроводов производства фирмы FIRAT (Фират)

Удельные потери давления (потеря напора) трубопровода указано для 1 м.п. трубы.

Проанализировав номограмму вы более наглядно увидите ранее указанные взаимосвязи между параметрами.

Итак суть гидравлического расчёта мы определили.

Теперь пройдёмся отдельно по каждому из параметров.

Расход теплоносителя

Расход теплоносителя, для более широкого понимания количество теплоносителя, напрямую зависит от тепловой нагрузки которую теплоноситель должен переместить от теплогенератора к отопительному прибору.

Конкретно для гидравлического расчёта требуется определить расход теплоносителя на заданном расчётном участке. Что такое расчётный участок. Расчетным участком трубопровода принимается участок постоянного диаметра с неизменным расходом теплоносителя. Например если в состав ветки входят десять радиаторов (условно каждый прибор мощностью 1 кВт) а общий расход теплоносителя рассчитан на перенос теплоносителем тепловой энергии равной 10 кВт. То первым участком будет участок от теплогенератора до первого в ветке радиатора (при условии что по всему участку постоянный диаметр) с расходом теплоносителя на перенос 10 кВт. Второй участок будет находится между первым и вторым радиатором с расходом на перенос тепловой энергии 9 кВт и так далее вплоть до последнего радиатора. Рассчитывается гидравлическое сопротивление как подающего трубопровода так и обратного.

Расход теплоносителя (кг/час) для участка рассчитывается по формуле:

G уч = (3,6 * Q уч) / (с * (t г - t о)) кг/ч

Q уч - тепловая нагрузка участка Вт. Например для вышеуказанного примера тепловая нагрузка первого участка равна 10 кВт или 1000 Вт.

с = 4,2 кДж/(кг·°С) - удельная теплоемкость воды

t г - расчетная температура горячего теплоносителя в системе отопления, °С

t о - расчетная температура охлажденного теплоносителя в системе отопления, °С.

Скорость потока теплоносителя.

Минимальный порог скорости теплоносителя рекомендуют принимать в пределах 0,2 - 0,25 м/с. На меньших скоростях начинается процесс выделения избыточного воздуха содержащегося в теплоносителе что может приводить к образованию воздушных пробок и как следствие полный либо частичный отказ работы системы отопления. Верхний порог скорости теплоносителя лежит в диапазоне 0,6 - 1,5 м/с. Соблюдение верхнего порога скорости позволяет избежать возникновение гидравлических шумов в трубопроводах. На практике было определён оптимальный диапазон скорости 0,3 - 0,7 м/с.

Более точный диапазон рекомендованной скорости теплоносителя зависит от материала трубопроводов применяемых в системе отопления а точнее от коэффициента шероховатости внутренней поверхности трубопроводов. Например для стальных трубопроводов лучше придерживаться скорости теплоносителя от 0,25 до 0,5 м/с для медных и полимерных (полипропиленовые, полиэтиленовые, металлопластиковые трубопроводы) от 0,25 до 0,7 м/с либо воспользоваться рекомендациями производителя при их наличии.



Понравилась статья? Поделитесь ей