Контакты

Как рассчитать гвс максимальное. Расчет горячего водоснабжения: контроль качества и перерасчеты

Средняя часовая тепловая нагрузка горячего водоснабжения потребителя тепловой энергии Q hm , Гкал/ч, в отопительный период определяется по формуле:

Q hm =/T(3.3)

a= 100 л/сут - норма затрат воды на горячее водоснабжение;

N =4 - количество человек;

Т = 24 ч – продолжительность функционирования системы горячего водоснабжения абонента в сутки, ч;

t c - температура водопроводной воды в отопительный период, °С; при отсутствии достоверной информации принимаетсяt c = 5 °С;

Q hm =100∙4∙(55-5)∙10 -6 /24=833,3∙10 -6 Гкал/ч= 969 Вт

3.3 Общий расход теплоты и расход газа

Для проектирования выбирается котел двухконтурный. При расчете расхода газа учитывается, что котел на отопление и ГВС работает раздельно, то есть при включении контура ГВС контур отопления отключается. Значит общий расход теплоты будет равен максимальному расходу. В данном случае максимальный расход теплоты на отопление.

1. ∑Q = Q omax = 6109 ккал/ч

2. Определим расход газа по формуле:

V =∑Q /(η ∙Q н р), (3.4)

где Q н р =34 МДж/м 3 =8126 ккал/м 3 - низшая теплота сгорания газа;

η – КПД котла;

V = 6109/(0,91/8126)=0,83 м 3 /ч

Для коттеджа выбираем

1. Котел двухконтурный АОГВ-8, тепловая мощность Q=8 кВт, расход газа V=0,8 м 3 /ч, номинальное входное давление природного газа Рном=1274-1764 Па;

2. Плита газовая, 4-х конфорочная, ГП 400 МС-2п, расход газа V=1,25м 3

Общий расход газа на 1 дом:

Vг =N∙(Vпг ∙Kо +V2-котла ∙ К кот), (3.5)

где Kо=0,7-коэффициент одновременности для газовой плиты принимаемый по таблице в зависимости от количества квартир;

К кот =1- коэффициент одновременности для котла по таблице 5 ;

N-количество домов.

Vг =1,25∙1+0,8∙0,85 =1,93 м 3 /ч

Для 67 домов:

Vг =67∙(1,25∙0,2179+0,8∙0,85)=63,08 м 3 /ч

3.4 Расчетные тепловые нагрузки школы

Расчет нагрузок на отопление

Расчетную часовую тепловую нагрузку отопления отдельного здания определяем по укрупненным показателям:

Q o =η∙α∙V∙q 0 ∙(t п -t o)∙(1+K и.р.)∙10 -6 (3.6)

где - поправочный коэффициент, учитывающий отличие расчетной температуры наружного воздуха для проектирования отопленияt o отt o = -30 °С, при которой определено соответствующее значение, принимается по приложению 3 , α=0,94;

V- объем здания по наружному обмеру,V=2361 м 3 ;

q o - удельная отопительная характеристика здания приt o = -30 °, принимаемq o =0,523 Вт/(м 3 ∙◦С)

t п - расчетная температура воздуха в отапливаемом здании, принимаем 16°С

t о - расчетная температура наружного воздуха для проектирования отопления (t о =-34◦С)

η- КПД котла;

K и.р - расчетный коэффициент инфильтрации, обусловленной тепловым и ветровым напором, т.е. соотношение тепловых потерь зданием с инфильтрацией и теплопередачей через наружные ограждения при температуре наружного воздуха, расчетной для проектирования отопления. Рассчитывается по формуле:

K и.р =10 -2 ∙ 1/2 (3.7)

где g- ускорение свободного падения, м/с 2 ;

L-свободная высота здания, принимаем равной 5 м;

ω - расчетная для данной местности скорость ветра в отопительный период, ω=3м/с

K и.р =10 -2 ∙ 1/2 =0,044

Q o =0,91∙0,94∙2361∙(16+34)∙(1+0,044)∙0,39 ∙10 -6 =49622,647∙10 -6 Вт.

Расчет нагрузок на вентиляцию

При отсутствии проекта вентилируемого здания расчетный расход те плоты на вентиляцию, Вт [ккал/ ч], определятся по формуле для укрупненных расчетов:

Q в = V н ∙q v ∙(t i - t о), (3.8)

где V н - объем здания по наружному обмеру, м 3 ;

q v - удельная вентиляционная характеристика здания, Вт/(м 3 ·°С) [ккал/(ч·м 3 ·°С)], принимается по расчету; при отсутствии данных по табл. 6 для общественных зданий ;

t j , - средняя температура внутреннего воздуха вентилируемых помещений здания, 16 °С;

t о, - расчетная температура наружного воздуха для проектирования отопления, -34°С,

Q в = 2361∙0,09(16+34)=10624,5

где M – расчетное количество потребителей;

a – норма расхода воды на горячее водоснабжение при температуре

t г = 55 0 С на одного человека в сутки, кг/(сут×чел);

b – расход горячей воды с температурой t г = 55 0 С, кг (л) для общественных зданий, отнесенный к одному жителю района; при отсутствии более точных данных рекомендуется принимать b = 25 кг в сутки на одного человека, кг/(сут×чел);

c p ср =4,19 кДж/(кг×К) – удельная теплоемкость воды при ее средней температуре t ср = (t г -t х)/2;

t х – температура холодной воды в отопительный период (при отсутствии данных принимается равной 5 0 С);

n c – расчетная длительность подачи теплоты на горячее водоснабжение, с/сут; при круглосуточной подаче n c =24×3600=86400 с;

коэффициент 1,2 учитывает выстывание горячей воды в абонентских системах горячего водоснабжения.

Q гвс =1,2∙300∙ (5+25) ∙ (55-5) ∙4,19/86400=26187,5 Вт

Введение:

Тема расчета платы за коммунальные ресурсы одна из наиболее сложных. Тем, кто ранее с проблемой не сталкивался, сразу разобраться трудно, да и времени на это как бы нет.

Однако попробуем.

Для расчетов применяются ПП РФ №354 (порядок и методики на все случаи жизни), ПП РФ №307 (только для отопления и только до 1 июля 2016 года, далее действует ПП РФ №354), ПП РФ №306 (нормативы).

Текст документов сложный, массовому плательщику практически недоступный. Нет четкой системы в обозначениях физических величин, что может запутать читателя, отсутствуют наименования физических величин, применяемых в расчетных формулах и пояснения. Как будто для себя писали. Типа сами знаем, а остальным знать необязательно.

И еще одно начальное замечание. Господа из УК и от Застройщика часто выказывают великую радость относительно «энергоэффективности» новостроек, в частности нашего района.

Сущностью энергоэффективности является жесткий учет всех коммунальных ресурсов и меры по их экономии. Посмотрим в ходе обсуждения насколько обоснована такая «радость».

Поскольку у нас система ГВС закрытая, то есть нецентрализованная, то для расчетов применяется соответствующий раздел ПП РФ №354 (приложение 2 раздел IV), когда производство коммунальной услуги, в данном случае ГВС, осуществляется исполнителем (УК) на нашем с Вами оборудовании ИТП из состава общего имущества.

Относительно этого самого понятия «производство» ГВС исполнителем пока вдаваться в подробности не будем. Это отдельная довольно «мутная» и спорная тема, кто как и что на самом деле производит.

Заметим только то, что согласно ПП РФ №354, п.54 Правил четко определено, что плата за содержание общего имущества (оборудования ИТП, где исполнитель услуги нагревает воду для ГВС) взимается отдельно. То есть «производственные» - эксплуатационные расходы на это общее имущество входят в состав платежа за содержание и ремонт общего имущества и не включаются в калькуляцию платежа за ГВС .

Итак, что надо учесть для расчета платы за ГВС?

Общий расход холодной питьевой воды (по линии ХВС), подаваемой на нагрев для ГВС.

Общий расход тепловой энергии, отбираемой в бойлерах у теплоносителя из системы централизованной поставки тепловой энергии (отопления).

Казалось все просто. Поделил общий расход тепла (нагрев) на общий объем холодной воды, которая израсходована для ГВС и порядок. Получил удельный расход тепла на кубометр горячей воды.

Однако в наших квитанциях нет учета суммарного объема по ХВС и ГВС раздельно.

А данные индивидуального потребления по ГВС и ХВС применять нельзя из-за систематической погрешности измерений квартирных счетчиков. Потому введено понятие ОДН для устранения этой систематической погрешности и точного суммарного учета расхода воды за весь дом общим домовым счетчиком.

В этом смысле ПП РФ №354 изложено не вполне корректно и походу уже давно устарело местами, когда в основу расчетов предлагается положить суммарные показания ИПУ, если нет общего домового счетчика, но при этом авторы нормативного текста совсем забыли о систематической погрешности квартирных ИПУ (зона нечувствительности ИПУ на малых расходах воды).

По смыслу закона «Об энергосбережении…» первое, что должно быть сделано – это установлены общие домовые приборы учета, а где нет технической возможности ввиду конструкции дома, техническая возможность должна быть создана путем реконструкции (пристроя) помещения для монтажа узлов учета коммунальных ресурсов.

Общий домовой учет коммунальных ресурсов не выгоден коммунальщикам, потому и саботируют процесс. В «мутной воде» мухлевать легче.

Так же походу у нас в ИТП нет и отдельного учета расхода тепловой энергии, которая расходуется на нагрев ГВС. По крайней мере это не видно из содержания сведений, приведенных в квитанции.

А как же супер пупер энергоэффективный ИТП? Не слишком ли это просто для супер пупер энергоэффективного ИТП с «космическими технологиями»?

Установили один общий счетчик ХВС и один общий счетчик тепловой энергии на весь блок и довольны как слоны?

А по Закону приборами учета должен быть оборудован каждый отдельный дом.

Чем он отличается тогда наш ИТП от обычного теплоузла старого советского дома?

Зачем нам «по ушам ездят» который год про энергоэффективность?

Походу за тем, чтобы какой-нибудь проходимец - «денежный насос» по энергосервисному договору «авторитетно» заявил, что нам надо установить приборы учета для повышения энергоэффективности.

Нам и так ясно, что нужен всеобъемлющий учет коммунальных ресурсов.

Кто мешал поставить двухканальный счетчик тепловой энергии? Тяжело было воткнуть счетчик для учета расхода подпиточной воды для системы ГВС?

А если они все же есть, то почему их показания в расчетах не используют и в квитанциях не указывают?


Введение

1. Определение тепловых нагрузок микрорайона на отопление, вентиляцию, ГВС

2. Выбор схемы включения подогревателя ГСВ к тепловой сети и температурного графика ЦКР

Тепловой гидравлический расчет кожухотрубного подогревателя

Расчет двухступенчатой последовательной схемы присоединения водоподогревателей ГВС

Тепловой и гидравлический расчет пластинчатых водоподогревателей ГВС

Список использованных источников


ВВЕДЕНИЕ


В данной работе рассчитаны тепловые нагрузки микрорайона на отопление и ГСВ, выбрана схема включения подогревателей ГСВ, выполнен тепловой и гидравлический расчет двух вариантов теплообменников. Рассматриваться будут только жилые здания однотипные, 5-10 этажные. Система теплоносителя закрытая, 4-х трубная с установкой подогревателя ГСВ в ЦТП. Все расчеты ведутся по укрупненным показателям. Принимаем жилые здания без вентиляции.

Расчетно-графическая работа выполняется в соответствии с действующими стандартными нормами и правилами, тех. условиями и основными положениями по проектированию, монтажу и эксплуатации систем теплоснабжения жилых зданий.


1. Определение тепловых нагрузок микрорайона на отопление, вентиляцию, ГВС.


Максимальный тепловой поток на отопление жилых зданий микрорайона:



где - укрупненный показатель максимального теплового потока для м²;

А - общая площадь жилого здания, м²;

Коэффициент учит-ий тепловой поток на отопление жилых зданий (доля жилых зданий)

80 Вт/м² Астрахань

А= 16400 м² - по заданию

0, т.к. рассматриваются только жилые здания.

Максимальный тепловой поток на горячее водоснабжение



где - коэффициент часовой неравномерности расхода числа на ГСВ

Укрупненный показатель среднего теплового потока на горячее водоснабжение, равный 376 Вт/мл;

U - число жителей в микрорайоне, по заданию, равно 560 чел;

376 Вт/мл;

Тепловые нагрузки на вентиляцию для жилого здания равны нулю.


2. Выбор схемы включения подогревателя ГСВ к тепловой сети и температурного графика ЦКР


Выбор схемы подключения подогревателя



где - из формулы (2)

Из формулы (1)

При принимают двухступенчатую схему, при принимают одноступенчатую параллельную схему

Вывод: подогреватель один, следовательно один общий подогреватель размещенный в ЦТП подключен по 2-х ступенчатой схеме.

Согласно заданию ЦКР отпуска тепла проводится по отопительному бытовому графику 130/700С, поэтому параметры точки излома, которые являются расчетными известны и составляют;

Максимальный расход на - средний тепловой поток на горячее водоснабжение (ГВС)



где - максимальный тепловой поток на ГВС из формулы (2)

Коэффициент часовой неравномерности расхода числа на ГСВ


3. Тепловой гидравлический расчет кожухотрубного подогревателя


Температура наружного воздуха в "точке излома"



где - температура воздуха внутри помещения,

Расчетная температура воздуха для проектирования отопления,

температура воды в падающем трубопроводе в "точке излом",

Температура воды приблизительно в обратном трубопроводе в "точке излома", при расчетной температуре теплоносителя в падающем трубопроводе 1300С.

Расчетный перепад температуры воды в тепловой сети, определяемый по формуле



где - расчетная температура сетевой воды в подающем трубопроводе,

Расчетная температура сетевой воды в обратном трубопроводе,


4. Расчет двухступенчатой последовательной схемы присоединения водоподогревателей ГВС

отопление вентиляция подогреватель кожухотрубный

Выбрать и рассчитать водоподогревательную установку для ГВС ЦТП, оборудованного водоподогревателем, состоящим из секций кожухотрубного типа с трубной системой из прямых гладких труб с блоком опорных перегородок по ГОСТ 27590. Система отопления микрорайона присоединена к магистральной тепловой сети по зависимой схеме. В ЦТП имеются баки - аккумуляторы.

Исходные данные:

Температура теплоносителя (греющей воды) в соответствии с рассчитанным повышенным графиком принята:

При расчетной температуре наружного воздуха для проектирования отопления;

в подающем трубопроводе ? 1 = 130 0С, в обратном - ? 2 = 700С;

в точке излома графика температур t ` n = -2,02 0С;

в подающем трубопроводе ? 1 n = 70 0С, в обратном ? 2 n = 44,9 0С.

Температура холодной водопроводной воды t c =5 0 С .

Температура горячей воды, поступающей в СГВ, t h =60 0 С .

Максимальный тепловой поток на отопление зданий Q o max = 1312000 Вт.

Расчетная тепловая производительность водоподогревателей Qsph=Qhm=QhT=210560 Вт.

6 Потери тепла трубопроводами Qht=0.

Плотность воды принять ?= 1000 кг/м3.

Максимальный расчетный секундный расход воды на ГВС q h = 2,5 л/с.

Порядок расчета:

Максимальный расчет воды на отопление:



Температура нагреваемой воды за водоподогревателем 1 ступени:



Расход греющей сетевой воды на ГВС:



4 Расход нагреваемой воды на ГВС:



Тепловой поток на II ступень водоподогревателя СГВ:



Тепловой поток на отопление в точке излома графика температур сетевой воды при температуре наружного воздуха t`n:



Расход греющей воды через I ступень водоподогревателя:



Расчетная тепловая производительность I ступени водоподогревателя:



Расчетная тепловая производительность II ступени водоподогревателя:



Температура греющей сетевой воды на выходе из водоподогревателя II ступени:



Температура греющей сетевой воды на выходе из водоподогревателя I ступени при условии равенства:


12 Среднелогарифмическая разность температур между греющей и нагреваемой водой для 1 ступени:



То же для II ступени:



Необходимое сечение трубок водоподогревателя при скорости воды в трубках и при однопоточном включении:



Из таблицы прил. 3 по полученной величине подбираем тип секции водоподогревателя со следующими характеристиками: , .

Скорость воды в трубках:



Скорость сетевой воды в межтрубном пространстве:



Расчет 1 ступени водоподогревателя ГВС:






д) коэффициент теплопередачи при:



е) требуемая поверхность нагрева 1 ступени:



ж) число секций водоподогревателя 1 ступени:



Принимаем 2 секции; действительная поверхность нагрева F1тр=0,65*2=1,3 м2.

Расчет II ступени водоподогревателя СГВ:

а) средняя температура греющей воды:



б) средняя температура нагреваемой воды:



в) коэффициент теплоотдачи от греющей воды к стенкам трубок:



г) коэффициент теплоотдачи от стенок трубок к нагреваемой воде:



д) коэффициент теплопередачи при



е) требуемая поверхность нагрева II ступени:



ж) число секций водоподогревателя II ступени:



Принимаем 6 секций.

В результате расчета получилось 2 секции в подогревателе I ступени и 6 секции в подогревателе II ступени суммарной поверхностью нагрева 5,55 м2.

Потери давления в водоподогревателях (6 последовательных секций длиной 2 м) для воды, проходящей в трубках с учетом?=2:



I ступень: ПВ 76*2-1,0-РГ-2-УЗ ГОСТ 27590-88

II ступень: ПВ 76*2-1,0-РГ-6-УЗ ГОСТ 27590-88


5. Тепловой и гидравлический расчет пластинчатых водоподогревателей ГВС


Выбрать и рассчитать водоподогревательную установку пластинчатого теплообменника, собранного из пластин 0,3p для СГВ того же ЦТП, что в примере с кожухотрубными секционными подогревателями. Следовательно, исходные данные, величины расходов и температуры теплоносителей на входе и на выходе из каждой ступени водоподогревателя принимаются такими же, как в прил. 3.

Проверяем соотношение ходов в теплообменнике I ступени, принимая предварительно потери давления по нагреваемой воде?Рн=100 кПа, по греющей воде?Ргр=40 кПа.



Соотношение ходов не превышает 2 , но расход греющей воды много больше расхода нагреваемой воды, следовательно, принимается несимметричная компоновка теплообменника.

По оптимальной скорости воды и живому сечению одного межпластинчатого канала определяем требуемое число каналов по нагреваемой воде и греющей воде:



Общее живое сечение каналов в пакете по ходу нагреваемой и греющей воды (принимаем равным 2, =15):



Фактические скорости греющей и нагреваемой воды:



Расчет водоподогревателя 1 ступени:

а) из табл.1 прил.4 ; получаем коэффициент теплоотдачи от греющей воды к стенке пластины:



б) коэффициент тепловосприятия от стенки пластины к нагреваемой воде:




г) требуемая поверхность нагрева водоподогревателя 1 ступени:



д) по табл.1 прил.4 поверхность нагрева одной пластины, количество ходов по греющей и нагреваемой воде в теплообменнике:



е) действительная поверхность нагрева водоподогревателя I ступени:



ж) потери давления I ступени по греющей и нагреваемой воде:



Расчет водоподогревателя II ступени:

а) коэффициент теплоотдачи от греющей воды к стенке пластины:



б) коэффициент тепловосприятия от пластины к нагреваемой воде:



в) , коэффициент теплопередачи:



г) требуемая поверхность нагрева водоподогревателя II ступени:



д) количество ходов по греющей и нагреваемой воде в теплообменнике:



Принимаем по греющей воде, по нагреваемой воде.

е) действительная поверхность нагрева водоподогревателя II ступени:



ж) потери давления II ступени по греющей и нагреваемой воде:




В результате расчета в качестве подогревателя ГВС принимаем два теплообменника (I и II ступени) разборной конструкции (р) с пластинами типа 0,3р, толщиной 1 мм, из стали 12×18Н10Т (исполнение 01), на консольной раме (исполнение 1к), с уплотнительными прокладками из резины марки 51-1481 (условное обозначение 12). Поверхность нагрева I ступени 8,7 м2, II ступени 8,7 м2. Технические характеристики пластинчатых теплообменников приведены в табл.1-3 прил. 4.

Условное обозначение теплообменников:

Ступени: Р 0,3р-1-8,7-1к-0,1-12 СХ1=

II Ступени: Р 0,3р-1-8,7-1к-0,1-12 СХ2=


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


1. СНиП 2.04.01-85. Внутренний водопровод и канализация зданий.

Липовка Ю.Л., Целищев А. В., Мисютина И.В. Горячее водоснабжение: метод. указания к курсовой работе. Красноярск: СФУ, 2011. 36с.

ГОСТ 27590-88. Подогреватели водоводяные систем теплоснабжения. Общие технические условия.

СНиП 2.04.07-89*. Тепловые сети.

5. СНиП 23-01-99. Строительная климатология.

6. СТО 4.2 - 07 - 2012 Система менеджмента качества. Общие требования к построению, изложению и оформлению документов учебной деятельности. Взамен СТО 4.2 - 07 - 2010; дата введ. 27.02.2012. Красноярск: ИПК СФУ. 2012. 57 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Пример 1. Рассчитать систему горячего водоснабжения пятиэтажного двухсекционного жилого дома. Сеть запроектирована на основании плана здания, приведенного в прил. 1, 2. Расчетная схема сети представлена на рис. 2.1 (аналогично схеме сети холодного водоснабжения).

В качестве теплоносителя используется перегретая вода из теплосети с параметрами t н = 120 °С и t к = 70 °С.

Данные по холодному водоснабжению принимаются из примера 1, при­веденного в п. 1.7.

Система горячего водоснабжения принята централизованной с приготовлением горячей воды в скоростном водонагревателе с переменной производительностью с использованием теплоносителя из теплосети.

Схема сети горячего водоснабжения принята тупиковая с нижней разводкой магистралей (как и сеть холодного водопровода).

Поскольку потребление горячей воды неравномерно, то сеть принята с циркуляцией в магистрали и стояках.

Определяются расчетные расходы горячей воды и тепла. Расходы горячей воды на участках сети определяются по формуле (2.1). Поскольку система обслуживает одинаковых потребителей, то величина P h находится по формуле (2.3).

Здесь величина и приняты по прил. 3 [ 1 ].

Величина определяется по формуле (2.7)

Величина , принята по прил. 3 [ 1 ].

Максимальный часовой расход горячей воды определяется по формуле (2.5)

Величина определена по табл.2 прил. 4 [ 1 ].

Средний часовой расход горячей воды определяется по формуле (2.8)

, м 3 /ч

Максимальный часовой расход тепла определяется по формуле (2.11)


Рис. 2.1. Расчетная схема сети горячего водоснабжения


Таблица 2.3

Пример расчета сети горячего водоснабжения в режиме водоразбора.

Расчет-ный участок Длина уч-ка, м Число прибо-ров, N Вероят-ность действия приборов, Р t N*P α Расход одного прибора, q t 0 л/с Расчет-ный расход, q t л/с Диаметр, d мм Cкорость, V м/с Удельная потеря напора, мм/пм Потеря напора на участке, мм Примечания
1-2 1,50 0,016 0,016 0,205 0,09 0,09 0,78
2-3 0,55 0,016 0,032 0,241 0,2 0,24 2,08
3-4 0,80 0,016 0,048 0,270 0,2 0,27 2,35
4-5 3,30 0,016 0,048 0,270 0,2 0,27 1,13
5-6 2,80 0,016 0,096 0,338 0,2 0,34 1,42
6-7 2,80 0,016 0,144 0,393 0,2 0,39 1,63
7-8 2,80 0,016 0,192 0,441 0,2 0,44 1,84
8-9 4,00 0,016 0,240 0,485 0,2 0,49 1,17
9-10 10,00 0,016 0,800 0,948 0,2 0,95 1,2
10-вод 13,00 0,016 1,920 1,402 0,2 1,40 1,34
вод-сч 7,00 0,013 2,106 1,479 0,3 2,22 2,1
ввод 10,00 0,013 2,106 1,479 0,3 2,22 1,05
11-12 3,30 0,016 0,096 0,338 0,2 0,34 0,91
12-13 2,80 0,016 0,192 0,441 0,2 0,44 1,19
13-14 2,80 0,016 0,288 0,524 0,2 0,52 1,44
14-15 2,80 0,016 0,384 0,598 0,2 0,60 1,65
15-9 4,00 0,016 0,480 0,665 0,2 0,67 1,84

Поверхность нагрева нагревательных трубок водонагревателя определяется по формуле (2.13). Расчетная разность температур определяется по формуле (2.14). Примем параметры теплоносителя t н = 120 °С, t к = 70 °С, параметры нагреваемой воды t h =60 С и t c =5 С.

°С

По прил. 8 [ 2 ] принимаем скоростной водонагреватель N 11 ВТИ – МосЭнерго с поверхностью нагрева одной секции 5.89 м. Потребное число секций определится по формуле (2.16)

cекции

Длина секции 2000 мм, наружный диаметр корпуса 219 мм, число трубок 64.

Расчет системы горячего водоснабжения в режиме водоразбора производится в табличной форме (табл. 2.3).

Потери напора на участках сети горячего водоснабжения определялись по формуле (2.19). Величина K l принималась 0.2 - для распределительных трубопроводов и 0.1 - для водоразборных стояков без полотенцесушителей. (Принято присоединение полотенцесушителей к сети отопления.)

Общие потери напора на линии 1-ввод составляют 21125 мм или 21.1 м. Поскольку стояк Ст ТЗ-2 имеет вдвое большую гидравлическую нагрузку, чем стояк Ст ТЗ-1, то для него принят диаметр 25 мм и произведен расчет скоростей и потерь напора на этом стояке. Поскольку потери напора на участках 4 – 8 оказались больше, чем на участках 11 – 15, то стояк Ст ТЗ-1 принят за расчетный.

Требуемый напор на вводе в здание для работы системы горячего водоснабжения определяется по формуле (2.20)

Здесь потери напора в водонагревателе определены по формуле (2.17)

Расчет системы горячего водоснабжения в режиме циркуляции производится в табличной форме (табл. 2.4). Расчетная схема сети представлена на рис. 2.1.

Таблица 2.4.

Расчет сети горячего водоснабжения в режиме циркуляции

Расчетные уч-ки Длина уч-ка Циркуля-ционный расход, л/с Диаметр, мм Скорость, м/с Потери напора, мм Примеча-ния
на 1 пог. м. на уч-ке
вод-4 13,00 0,28 0,27 6,24
4-3 10,00 0,19 0,24 4,30
3-2 4,00 0,10 0,24 10,00
2-1 11,20 0,10 0,42 45,98
1-2″ 11,20 0,10 0,42 45,98
2″-3″ 4,00 0,10 0,42 45,98
3″-4″ 10,00 0,19 0,45 36,13
4″-ввод 13,00 0,28 0,35 13,88
Итого: 1340

Циркуляционный расход на участках принимался по формуле (2.23), Диаметры циркуляционных труб в стояках принимались такими же, как и диаметры распределительных; в магистралях они принимались на размер меньше.

Общие потери напора на трение и местные сопротивления в сети составили 1340 мм. Здесь необходимо учесть потери напора в водонагревателе при пропуске циркуляционного расхода, которые определяются по формуле (2.17)

М = 7,9 мм = 8 мм

Таким образом, потери напора в расчетном циркуляционном кольце составят

Определяется возможность естественной циркуляции. Естественный циркуляционный напор определяется для системы с нижней разводкой по формуле (2.25)

13.2 (986.92 - 985.73) + 2(985.73 - 983.24) = 20.69 мм

Потери напора в циркуляционном кольце (1348 мм) значительно превышают естественный циркуляционный напор (20.69 мм), поэтому проектируется насосная циркуляция.

Производительность циркуляционного насоса определяется по формуле (2.26)

Требуемый напор насоса определяется по формуле (2.27)

По прил. XIII [ 3 ] принимаем насос К50-32-125 (К8/18б) с номинальной производительностью 2.5 л/с и напором 11,4 м. Эти величины превышают расчетные, поэтому можно заменить двигатель с числом оборотов 2860 об/мин на 1480 об/мин. Из формулы (7.1) [ 3 ] определим, что

л/с; м.

При этом мощность на валу насоса станет

кВт

Здесь величины Q 1 , H 1 , N 1 соответствуют числу оборотов n 1 =1480 об/мин

3. ПРОЕКТИРОВАНИЕ ВНУТРЕННЕЙ СИСТЕМЫ ВОДООТВЕДЕНИЯ

Система водоотведения включает комплекс инженерных устройств внутри здания для приема сточных вод и их отведения за пределы здания в уличную водоотводящую сеть. Она состоит из следующих основных элементов:

Приемников сточных вод - санитарных приборов;

Гидравлических затворов (сифонов);

Отводных линий;

Стояков с вытяжными трубами;

Выпусков.

Особое место занимает дворовая водоотводящая сеть, которая служит для отведения сточных вод от зданий в уличные коллекторы.



Понравилась статья? Поделитесь ей