Контакты

Схема системы гвс со смешанным двухступенчатым присоединением. Схемы присоединения систем горячего водоснабжения к тепловым сетям

Принципиальная схема системы горячего водоснабжения включает в себя установку для нагревания холодной воды до температуры не выше 75° С и сети разводящих трубопроводов. Для этой цели используют скоростные проточные водонагреватели. В таких водонагревателях вода протекает со значительной скоростью через нагревательные трубки, которые в свою очередь подогреваются водой из теплосети, проходящей внутри корпуса водонагревателя и омывающей их.

При приготовлении горячей воды в ЦТП по закрытой схеме используют скоростные водонагреватели OCT 34-588-68 (теплоноситель -вода), OCT 34-531-68 и OCT 34-532-68 (теплоноситель - пар).

Рис. 174. Скоростные водонагреватели: а -секционный ОСТ-34-588-68, б-паровой; 1 - корпус, 2- линзовый компенсатор, 3 - решетка, 4 - латунные трубки, 5 - трубная система, 6 - задняя водяная камера, 7 - колпак, 8 - передняя водяная камера

Водонагреватели ОСТ 34-588-68 ( , а) рассчитаны на давление 1 МПа и температуру теплоносителя 150° С. Выпускают их отдельными секциями наружным диаметром от 57 до 325 мм с поверхностью нагрева каждой секции от 0,37 до 28 м2. Требуемая поверхность нагрева ^водонагревателя комплектуется из однотипных секций, соединяемых между собой калачами. Секция состоит из корпуса 1 с приваренными к ней стальными трубными решетками 3 и пучка латунных трубок 4 диаметром 16X1 мм. К корпусу приварены патрубки с фланцами для соединения секций в межтрубном пространстве. Горячая вода из теплосети направляется в межтрубное пространство, а нагреваемая вода перемещается по трубкам водонагревателя.

Паровые водонагреватели (ОСТ 34-531-68 и ОСТ 34-532-68) ( ,6) предназначены для подогрева воды паром в системах отопления и горячего водоснабжения. Максимальное рабочее давление пара 1 МПа. Водонагреватели выпускают двухходовые (ОСТ 34-531-68) и четырехходовые (ОСТ 34-532-68), Поверхность нагрева может быть от 6,3 до 224 м2.

Водонагреватель состоит из корпуса 1, трубной системы 5, передней 8 и задней 6 водяных камер. В трубную систему входят стальные решетки и пучок латунных трубок диаметром 16X1 мм. Нагреваемая вода поступает через нижний патрубок передней входной камеры, проходит по латунным трубкам, подогревается и через верхний патрубок уходит в сеть. Пар, подогревающий воду, поступает в межтрубное пространство.

Нагретая в водонагревателе вода по подающему трубопроводу поступает в систему горячего водоснабжения, из которой потребители используют ее для бытовых и производственных целей. Взятая из системы вода пополняется из водопровода.

Для подогрева остывшей в системе воды прокладывается циркуляционный трубопровод, который соединяет систему горячего водоснабжения с водонагревателем.


Чтобы поддерживать постоянный расход воды, поступающей из тепловой сети, устанавливают регулятор расхода, а на трубопроводе, подающем холодную воду в водонагреватель, - водомер, который учитывает расход воды. На узле управления у водонагревателей монтируют задвижки для отключения трубопровода системы горячего водоснабжения и отопления и отдельных частей узла. Давление и температуру воды в отдельных точках узла управления измеряют манометрами и термометрами.

В зависимости от назначения системы горячего водоснабжения выполняют с двухтрубными стояками, один из которых циркуляционный, и однотрубными.

Двухтрубные системы горячего водоснабжения с циркуляционными стояками () применяют там, где не допускается остывание воды в трубах, например в многоэтажных жилых зданиях, гостиницах, больницах и других зданиях.

Рис. 175. Двухтрубная система горячего водоснабжения с циркуляционными, стояками

Рис. 176. Однотрубная схема горячего водоснабжения: 1 -диафрагма, 2-пробковый кран, 3 - подающая транзитная магистраль, 4 - циркуляционная транзитная магистраль

В однотрубных системах централизованного горячего водоснабжения, используемых в жилых домах (), стояки в пределах одной секции вверху соединяются между собой, причем все стояки, кроме одного, присоединяются к подающей магистрали 3, а один холостой стояк - к циркуляционной магистрали 4. Чтобы обеспечить равномерную циркуляцию воды в системах горячего водоснабжения зданий, присоединяемых к одному центральному тепловому пункту, на холостом стояке устанавливают диафрагму.

Для лучшего водораспределения к отдельным точкам потребления воды, а также в целях сохранения одинаковых диаметров по всей высоте здания в однотрубных системах горячего водоснабжения стояки закольцовывают. При кольцевой схеме для зданий высотой до 5 этажей включительно диаметры стояков принимают 25 мм, а для зданий от 6 этажей и выше - диаметром 32 мм. Температурные удлинения в стояках систем горячего водоснабжения зданий повышенной этажности компенсируются за счет установки одновитковых полотенцесушителей, а в.-двухтрубных системах горячего водоснабжения за счет установки на стояках П-образных компенсаторов.

Полотенцесушители из оцинкованных труб присоединяются к системе горячего водоснабжения по проточной схеме. Трубопроводы горячего водоснабжения, в целях предохранения от коррозии, следует выполнять из стальных оцинкованных труб.

Для обеспечения воздухоудаления из системы трубы прокладывают с уклоном к вводу не менее 0,002. В системах с нижней разводкой воздух удаляют через верхний водоразборный кран. При верхней разводке воздух удаляется через автоматические воздухоотводчики, устанавливаемые в верхних точках систем.

Для того чтобы любое жилое строение нормально функционировало, обязательно нужен монтаж системы водоснабжения. Ее грамотное устройство обеспечит своевременную подачу и достаточный напор воды. В данной статье будет подробно рассмотрена схема горячего водоснабжения, типы подключения и ее особенности в многоквартирном доме.

В чем особенность водоснабжения многоквартирного дома?

Обеспечить водой строение с большой этажностью очень сложно. Ведь дом состоит из множества квартир с отдельными санузлами и сантехническими приборами. Иными словами схемы водоснабжения в многоквартирных домах - это некий комплекс с отдельными разводками труб, регуляторов давления, фильтрами и учетным оборудованием.

Чаще всего жители многоэтажек пользуются водой центрального водоснабжения. С помощью водопровода она подается в отдельные сантехнические приборы под определенным давлением. Зачастую вода проходит очистку с помощью хлорирования.

Состав системы центрального водоснабжения

Централизованные схемы водоснабжения в многоэтажных домах состоят из распределительной сети, водозаборных сооружений и очистительных станций. Прежде чем попасть в квартиру, вода проходит долгий путь от насосной станции к водоему. Только после очистки и обеззараживания вода направляется в распределительную сеть. С помощью последней вода подается к приборам и оборудованию. Трубы центральной схемы горячего водоснабжения многоэтажного дома могут быть выполнены из меди, металлопластика и стали.

Последний вид материала практически не используется в современных постройках.

Типы схем водоснабжения

Система водоснабжения бывает трех типов:

  • коллекторная;
  • последовательная;
  • комбинированная (смешанная).

В последнее время, когда в квартирах все чаще встречается большое количество сантехнического оборудования, используют коллекторную схему разводки . Она является оптимальным вариантом нормального функционирования всех приборов. Схема горячего водоснабжения коллекторного типа исключает перепады давления в разных точках подключения. Это является главным преимуществом данной системы.

Если рассматривать схему более подробно, то можно сделать вывод, что никаких проблем с использованием сантехнического оборудования по назначению в одно и то же время не будет. Суть подключения такова, что каждый отдельный потребитель воды соединяется с коллекторами стояка холодного и горячего водоснабжения изолированно. Трубы не имеют множества разветвлений, поэтому вероятность протечки очень мала. Такие схемы водоснабжения в многоэтажных домах просты в обслуживании, однако стоимость оборудования достаточно высокая.

По мнению специалистов, коллекторная схема горячего водоснабжения требует установки более сложной установки сантехнических приборов. Однако эти отрицательные стороны не столь критичны, особенно если учесть тот факт, что у коллекторной схемы есть множество достоинств, к примеру - скрытый монтаж труб и учет индивидуальных особенностей оборудования.

Последовательная схема горячего водоснабжения многоэтажного дома - это самый простой способ разводки. Такая система проверена временем, она вводилась в эксплуатацию еще во времена СССР. Суть ее устройства в том, что трубопровод холодного и горячего водоснабжения проводят параллельно друг другу. Инженеры советуют использовать данную систему в квартирах с одни санузлом и небольшим количеством сантехнического оборудования.

В народе такую схему горячего водоснабжения многоэтажного дома называют тройниковой. То есть от главных магистралей идут разветвления, которые соединяются друг с другом тройниками. Несмотря на простоту монтажа и экономию расходного материала, данная схема имеет несколько основных недостатков:

  1. В случае протечке трудно искать поврежденные участки.
  2. Невозможность подачи воды к отдельному сантехническому прибору.
  3. Трудность доступа к трубам в случае поломки.

Горячее водоснабжение многоквартирного дома. Схема

Разводки труб делятся на два типа: к стояку горячего и холодного водоснабжения. Кратко их называют ХВС и ГВС. Особого внимания заслуживает система горячего водоснабжения многоквартирного дома. Схема сетей ГВС состоит из двух типов проводок - нижней и верхней. Чтобы сохранить высокую температуру в трубопроводе часто используют закольцованные проводки. Гравитационный напор заставляетводу циркулировать в кольце, несмотря на отсутствие водоразбора. В стояке она охлаждается и попадает в нагреватель. Вода с большей температурой подается в трубы. Так и происходит непрерывная циркуляция теплоносителя.

Тупиковые магистрали также не редкость, но чаще всего их можно встретить в хозяйственных помещениях промышленных объектов и в небольших жилых зданиях с малой этажностью. Если отбор воды планируется непостоянно, то применяют циркуляционный трубопровод. Инженеры советуют использовать горячее водоснабжение в многоквартирных домах (схема была рассмотрена выше) с этажностью не более 4.Трубопровод с тупиковым стоякомтакже встречается в общежитиях, санаториях и гостиницах. Трубы тупиковой сети обладают меньшей металлоемкостью, поэтому остывают быстрее.

Сети ГВС в своем составе имеют горизонтальный магистральный трубопровод и распределительные стояки. Последние обеспечивают разводки труб по отдельным объекта - квартирам. ГВС монтируют в максимальной близости к сантехническому оборудованию.

Для построек с большой протяженностью магистральных труб используют схемы с циркуляционным и закольцованным по дающим трубопроводами. Обязательным условием является установка насоса для поддержания циркуляции и постоянного водообмена.

Двухтрубная схема ГВС — Фото 07

Современные строители и инженеры все чаще прибегают к использованию двухтрубных систем ГВС. Принцип работы заключается в том, что насос забирает воду из обратной магистрали и подает ее в нагреватель.Такой трубопровод обладает большей металлоемкостью и считается наиболее надежным для потребителей.

Страница 5 из 18

Схемы подключения ГВС к тепловым сетям.

· В закрытых системах теплоснабжения теплоноситель полностью возвращается к

источнику теплоснабжения (за исключением утечек). Теплоноситель используют как греющую среду в теплообменных аппаратах. Закрытые системы гидравлически изолированы от тепловых сетей, что обеспечивает стабильное качество воды в ГВС, т.к. нет выноса шлаковых отложений в систему ГВС (это плюс). Однако, в систему ГВС (в трубы) поступает вода из холодного водопровода, который не подвергается деаэрации (удалению кислорода и углекислого газа), нагревается и усугубляет коррозионную активность, следовательно, быстрее происходит разрушение труб от коррозии, чем в открытых схемах. Поэтому в закрытых системах рекомендуют применять неметаллические, пластиковые трубы.

Закрытые схемы различают одноступенчатые и многоступенчатые. Выбор схемы зависит от соотношения расхода тепла на отопление и ГВС. Выбор схемы присоединения производится на основании расчета.

· В открытых системах ГВС используют не только теплоту, подводимую

теплоносителем из тепловой сети в местную сеть, но и сам теплоноситель. В открытых схемах трубы ГВС коррозируют в меньшей степени, чем в закрытых системах, т.к. вода поступает из тепловой сети после химводочистки (ХВО), но при этом возможно нарушение стабильности санитарных норм показателей воды. Открытые схемы дешевле. Чем закрытые, т.к. не требуются затраты на теплообменники и насосное оборудование.

Схемы присоединения систем горячего водоснабжения зданий к тепловым сетям.

· Одноступенчатые схемы (рис. 7, 8):

Один теплообменник и нагрев на ГВС происходит перед МОС).

Рис. 7. Одноступенчатая предвключенная

Рис. 8. Одноступенчатая параллельная

· Многоступенчатые схемы (рис. 9, 10):

Т = 30˚С Т = 5˚С

Рис. 9. Последовательная двухступенчатая

Рис. 10. Смешанная двухступенчатая

Двухступенчатые схемы эффективны в применении тем, что происходит глубокое снижение температуры обратной воды, а также имеет место независимый расход тепла на отопление и ГВС, т.е. колебание расхода в системе ГВС не отражается на работе МОС, что может происходить в открытых схемах.

Существует три основных схемы подключения теплообменников: параллельная, смешанная, последовательная. Решение о применении той или иной схемы принимается проектной организацией на основании требований СНиП и поставщиком тепла, исходящего из своих энергетических мощностей. На схемах стрелочками показано прохождение греющей и подогреваемой воды. В рабочем режиме задвижки, находящиеся в перемычках теплообменников, должны быть закрыты.

1. Параллельная схема

2. Смешанная схема

3. Последовательная (универсальная) схема


Когда нагрузка ГВС существенно превышает отопительную, подогреватели горячего водоснабжения устанавливают на тепловом пункте по так называемой одноступенчатой параллельной схеме, при которой подогреватель горячего водоснабжения присоединяется к тепловой сети параллельно системе отопления. Постоянство температуры водопроводной воды в системе горячего водоснабжения на уровне 55-60 ºС поддерживается регулятором температуры РПД прямого действия, который воздействует на расход греющей сетевой воды через подогреватель. При параллельном включении расход сетевой воды равен сумме ее расходов на отопление и горячее водоснабжение.

В смешанной двухступенчатой схеме первая ступень подогревателя ГВС включена последовательно с системой отопления на обратной линии сетевой воды, а вторая ступень присоединена к тепловой сети параллельно с системой отопления. При этом предварительный подогрев водопроводной воды происходит за счет охлаждения сетевой воды после системы отопления, что уменьшает тепловую нагрузку второй ступени и снижает общий расход сетевой воды на горячее водоснабжение.

В двухступенчатой последовательной (универсальной) схеме обе ступени подогревателя ГВС включены последовательно с системой отопления: первая ступень - после системы отопления, вторая - до системы отопления. Регулятор расхода, установленный параллельно второй ступени подогревателя, поддерживает постоянным суммарный расход сетевой воды на абонентский ввод независимо от расхода сетевой воды на вторую ступень подогревателя. В часы максимальных нагрузок ГВС вся или большая часть сетевой воды проходит через вторую ступень подогревателя, охлаждается в ней и поступает в систему отопления с температурой, ниже требуемой. При этом система отопления недополучает теплоту. Этот недоотпуск теплоты в систему отопления компенсируется в часы малых нагрузок горячего водоснабжения, когда температура сетевой воды, поступающей в систему отопления, выше требуемой при этой наружной температуре. В двухступенчатой последовательной схеме суммарный расход сетевой воды меньше, чем в смешанной схеме, благодаря тому, что в ней используется не только теплота сетевой воды после системы отопления, но и теплоаккумулирующая способность зданий. Снижение расходов сетевой воды способствует снижению удельной стоимости наружных тепловых сетей.

Схема присоединения водоподогревателей горячего водоснабжения в закрытых систкмах теплоснабжения выбирается в зависимости от соотношения максимального потока теплоты на горячее водоснабжение Qh max и максимального потока теплоты на отопление Qo max:

0,2 ≥ Qh max ≥ 1 - одноступенчатая схема
Qo max
0,2 Qh max двухступенчатая схема
Qo ma

Главные схемы подогрева воды для систем ГВС зданий

Классификация схем

У водоразборных приборов общественных, разных промышленных и жилых зданий предусматривается такая температура воды (горячей):

  • Не больше 70°С - слишком горячая вода приведет к ожогам.
  • Не меньше 50°С для систем ГВС, которые присоединены к закрытым системам теплоснабжения. При низкой температуре в воде не растворяются животные и растительные жиры.

Сетевая вода, которая циркулирует в трубопроводах, в закрытых системах теплоснабжения применяется только в качестве теплоносителя (не отбирается для потребителей из тепловой сети).

Сетевой водой осуществляется в теплообменных аппаратах (в закрытых системах) нагрев водопроводной холодной воды . В итоге по внутреннему водопроводу нагретую воду подают к водоразборным приборам промышленных, разных жилых и общественных зданий.

Сетевая вода, которая циркулирует в трубопроводах, в открытых системах применяется не только в качестве теплоносителя. Вода полностью или частично из тепловой сети отбирается потребителем.

Рассматривают только системы ГВС разных зданий, которые присоединены к закрытым системам теплоснабжения. Главные схемы таких систем указаны ниже.

Принципиальная схема системы ГВС с параллельным одноступенчатым присоединением подогревателей горячего водоснабжения.

Сейчас наиболее распространенной и простой считается схема с параллельным одноступенчатым присоединением подогревателей горячего водоснабжения. В количестве не меньше двух подогреватели параллельно присоединяются к той же тепловой сети, что и существующие системы отопления здания. Из водопроводной наружной сети воду подают в подогреватели горячего водоснабжения. В результате в них она будет нагреваться сетевой водой, которая поступает из подающего трубопровода.

Сетевую охлажденную воду подают в обратный трубопровод. После подогревателей нагретую до определенной температуры водопроводную воду направляют к водоразборным приборам различных зданий.

В случае, если водоразборные приборы будут закрыты, то по циркуляционному трубопроводу определенная часть горячей воды снова будет подана в подогреватели горячего водоснабжения.

Главным недостатком такой схемы считается большой расход воды (сетевой) для системы ГВС и, следовательно, во всей действующей системе теплоснабжения.

Такую схему с параллельным одноступенчатым присоединением подогревателей ГВС специалисты рекомендуют использовать в случае, если отношение максимального расхода теплоты на ГВС разных зданий к максимальному расходу теплоты, необходимому для отопления, составляет меньше 0,2 или больше 1. В итоге схема применяется при нормальном температурном графике воды (сетевой) в тепловых сетях.

Принципиальная схема системы горячего водоснабжения с последовательным двухступенчатым присоединением подогревателей ГВС

В данной схеме подогреватели ГВС разделяют на две ступени. Первые устанавливают на обратный трубопровод тепловой сети после систем отопления. К ним относят подогреватели ГВС нижней (первой) ступени.

Остальные устанавливают на подающем трубопроводе перед системами вентиляции и отопления зданий. К ним относят подогреватели ГВС верхней (второй) ступени.

Из водопроводной наружной сети вода с т t-1 будет подана в подогреватели ГВС нижней ступени. В них она будет нагреваться водой (сетевой) после систем вентиляции и отопления зданий. Сетевая охлажденная вода поступит в обратный трубопровод сети и направится на источник теплоснабжения.

Последующий нагрев воды проводится в подогревателях ГВС верхней ступени. Сетевая вода выступает в качестве греющего теплоносителя - ее подают из подающего трубопровода. Сетевая охлажденная вода будет направлена в системы вентиляции и отопления зданий. По внутреннему водопроводу горячая вода поступает к установленным водоразборным приборам. В такой схеме при водозаборных закрытых приборах часть нагретой воды подводится к подогревателям ГВС верхней ступени по циркуляционному трубопроводу.

Преимуществом такой схемы считается отсутствие необходимости для системы ГВС специального расхода воды (сетевой), потому что подогрев водопроводной воды проводится благодаря сетевой воде из систем вентиляции и отопления. К недостатку схемы с последовательным двухступенчатым присоединением подогревателей ГВС относят обязательную установку системы автоматизации и местное дополнительное регулирование всех видов тепловых нагрузок (отопления, вентиляции, горячего водоснабжения).

Схему рекомендуют использовать, если отношение максимального расхода теплоты на ГВС к максимальному расходу теплоты, необходимой для отопления зданий, будет находиться в пределах от 0,2 до 1. Схема требует определенного увеличения в тепловых сетях температурного графика воды (сетевой).

Принципиальная схема системы ГВС со смешанным двухступенчатым присоединением подогревателей ГВС

Более универсальной считают схему со смешанным двухступенчатым присоединением подогревателей ГВС. Данная схема в тепловых сетях применяется при повышенном и нормальном температурном графике воды (сетевой). Используется при любых отношениях максимального расхода теплоты на ГВС к максимальному расходу теплоты, необходимой для качественного отопления зданий.

Отличительной особенностью схемы от предыдущей является то, что подогреватели ГВС верхней ступени присоединяют к подающему трубопроводу сети параллельно (не последовательно) отопительной системе.

Водопроводная вода нагревается с помощью сетевой воды из подающего трубопровода. Сетевую охлажденную воду подают в обратный трубопровод сети. В итоге она там смешивается с водой (сетевой) из систем вентиляции и отопления и поступает в подогреватели ГВС нижней ступени.

По сравнению с предыдущей схемой недостатком считается необходимость в дополнительном расходе воды (сетевой) для подогревателей ГВС верхней ступени. В результате увеличивается расход воды во всей системе теплоснабжения.

Подписаться на статьи можно на

Типы и достоинства проточных схем ГВС
ГВС с использованием проточной схемы и пластинчатыми теплообменниками - наиболее эффективный и гигиенический способ приготовления горячей воды. По сравнению с аккумуляторными схемами он имеет существенные преимущества.

Для проточного ГВС применяются параллельная одноступенчатая схема, последовательная и смешанная двухступенчатые схемы.

Параллельная одноступенчатая схема с одним теплообменником, подключённым к подающему трубопроводу тепловой сети параллельно системе отопления (рис. 1 ), отличается простотой и дешевизной.

Двухступенчатая схема ГВС применяется с целью уменьшения температуры воды в обратном трубопроводе и суммарного расхода воды из тепловой сети. Для этого теплообменная поверхность теплообменника ГВС разделяется на два участка, называемых ступенями. В первой ступени холодная водопроводная вода нагревается водой, выходящей из системы отопления. Затем подогретая в первой ступени теплообменника вода догревается вместе с водой рециркуляции до требуемой температуры (55-60 °C) сетевой водой из подающего трубопровода теплосети.

При последовательной схеме ГВС вторая ступень подключена перед системой отопления к подающему трубопроводу (рис. 2 ). Сначала горячая сетевая вода проходит вторую ступень ГВС, затем поступает в систему отопления. Таким образом, может оказаться, что температура теплоносителя будет недостаточной для покрытия тепловых потерь здания. Тогда во время отбора большого количества горячей воды в часы пик подключённое к ИТП здание может недостаточно нагреваться. Из-за аккумулирующей способности строительной конструкции это не отражается на комфортности в помещениях, если период недостаточной подачи тепла не превышает примерно 20 мин. Для летнего неотопительного периода имеется отключаемый байпас, по которому сетевая вода после второй ступени поступает в первую ступень ГВС, минуя систему отопления.


Смешанная двухступенчатая схема ГВС отличается тем, что её вторая ступень подключена к подающему трубопроводу тепловой сети параллельно к системе отопления, а первая ступень - последовательно (рис. 3 ). Сетевая вода, выходящая из второй ступени ГВС, подмешивается к обратной воде из системы отопления и также проходит первую ступень.


Таким образом, комфортность в помещениях здания со смешанной двухступенчатой схемой ГВС не снижается, однако расходуется больше сетевой воды, чем при последовательной схеме ГВС (рис. 4 ).

* По книге Н.М. Зингера и др. «Повышение эффективности работы тепловых пунктов». М., 1990.

Двухступенчатая схема находит наибольшее распространение в жилых зданиях со значительными по отношению к отоплению нагрузками на ГВС. В зданиях с очень низкими или высокими тепловыми , по сравнению с отоплением (1

В западных странах в последнее время всё чаще задумываются о применении проточного способа ГВС, особенно после признания серьезной опасности заражения легионеллами - бактериями, размножающимися в непроточной тёплой воде. Строгие нормы, уже принятые в европейских странах, предусматривают регулярную термическую дезинфекцию аккумулирующих баков и подключённых к ним трубопроводов горячей воды, включая трубопроводы рециркуляции. Обеззараживание осуществляется подъемом температуры во всей системе на определённое время до 70 °C и выше. Необходимое для этого усложнение аккумуляторных схем особенно выявляет достоинства проточных систем ГВС с пластинчатыми теплообменниками. Они отличаются простотой и компактностью, требуют меньших инвестиций, обеспечивая при этом более низкие температуры обратной и меньшие расходы сетевой воды.

Более низкая температура воды в обратном трубопроводе тепловых сетей снижает тепловые потери и увеличивает КПД выработки электроэнергии на теплоэлектроцентрали. Меньшие расходы сетевой воды требуют меньших диаметров трубопроводов тепловых сетей и меньших расходов электроэнергии на её перекачку.

Варианты регулирования
В настоящее время многие фирмы усиленно работают над автоматическими регуляторами, которые обеспечивали бы комфортную температуру горячей воды с точностью до 1-2 °C и менее того. В аккумуляторных баках равномерность нагрева достигается естественным или искусственным перемешиванием поступающей воды с находящейся в баке.

Для этой цели в проточных системах ГВС , особенно с низким и резко изменяющимся расходом, при регулировании температуры горячей воды требуется учесть, кроме температуры, как вторую величину, расход. Ведущими фирмами-производителями разработаны регуляторы для небольшого - под одного потребителя - расхода, работающие без вспомогательной энергии. Эти регуляторы учитывают и расход, и температуру горячей воды. В отличие от обычных термостатических регуляторов, при отсутствии расхода горячей воды данные устройства вообще могут прекращать подачу греющего теплоносителя, что предохраняет теплообменник ГВС от образования известковых отложений.

В системах проточного ГВС с большим потреблением горячей воды колебания расхода, по сравнению с его общим значением, меньше, и удовлетворяющую точность регулирования температуры можно достичь применением как термостатических, так и электронных регуляторов. Однако в электронных регуляторах необходимо сглаживать кривую регулирования правильным выбором закона регулирования и характеристик самого регулирующего клапана - скорости хода привода регулятора, диаметра клапана Ду, его гидравлического сопротивления k VS - чтобы исключить явления колебания во всем диапазоне его работы. Постоянное открытие и закрытие регулятора с высокой частотой подвергает пластинчатый теплообменник ГВС большим термическим и гидравлическим нагрузкам, что приведёт к его преждевременному выходу из строя из-за возникновения наружных или внутренних неплотностей.

Для предупреждения колебаний при больших разностях расхода горячей воды или при значительных колебаниях температуры греющей воды, например 150-70 °C, целесообразно устанавливать два параллельных регулятора разных диаметров, которые - сами по себе - оптимально обеспечивают определенный диапазон расхода сетевой воды (рис. 5 ).


Как отмечалось выше, при отсутствии разбора горячей воды, например в системах без рециркуляции или при регулярных отключениях подачи воды, необходимо защитить теплообменник от карбонатных отложений за счет прекращения подачи сетевой воды. При больших расходах этого можно достигать использованием комбинированных регуляторов с двумя датчиками температуры - нагреваемой и греющей воды - на выходах теплообменника (рис. 6 ). Второй датчик, настроенный, например, на 55 °C, прекращает подачу теплоносителя на теплообменник и в случае, когда датчик температуры горячей воды установлен далеко от теплообменника, и на него не оказывает влияние греющая среда в связи с отсутствием водоразбора. При температуре в теплообменнике 55 °C процесс отложения солей жесткости существенно замедляется.


Чем ближе датчики установлены к среде, параметры которой подвергаются регулированию, тем более качественного регулирования можно достичь. Поэтому датчики температуры желательно устанавливать, по возможности, глубже в соответствующие штуцеры теплообменника. Для этого можно использовать пластинчатые теплообменники со штуцерами с обеих сторон пакета пластин, где в один из штуцеров вставляется датчик температуры, а другой служит для отбора теплоносителя. Тогда датчик омывается теплоносителем еще перед его выходом из теплообменника, и при отсутствии циркуляции теплоносителя датчиком фиксируется температура среды под воздействием теплопроводности и естественной конвекции, что не имело бы места при его установке вне теплообменника.

Двухступенчатые схемы ГВС отличаются тем, что в первой ступени нагрева тепло отбирается от обратной воды системы отопления. В связи с несоответствием тепловых нагрузок отопления и ГВС в зимнем или ночном режиме может оказаться, что горячая вода нагревается выше требуемых 55-60 °C. Например, теплоносителем с температурой 70 °C (расчетная точка) вода ГВС ещё в первой ступени может нагреваться до 67-69 °C. Чтобы исключить при этих температурах перегрев и интенсивные отложения карбонатов, имеется возможность установки регулирующего трёхходового клапана на входе или выходе теплообменника (рис. 7 ). Его задача, в зависимости от температуры теплоносителя на выходе теплообменника, пропускать греющую воду через теплообменник или мимо него - по байпасу. Датчик трёхходового клапана установлен в обратном трубопроводе. Он одновременно с регулированием температуры греющего теплоносителя косвенно ограничивает температуру горячей воды. При этом отбор тепла из обратного трубопровода не ограничивается, а оптимизируется, повышая надёжность и комфортность ГВС.


В пользу паяного теплообменника
В западных странах в подавляющем большинстве (свыше 90 %) случаев для целей ГВС используют паяные пластинчатые теплообменники. Это связано с относительной дешевизной и удобством обслуживания данных аппаратов.

Как правило, российские и украинские заказчики, имеющие опыт эксплуатации скоростных кожухотрубных теплообменников, часто требующих чисток, предпочитают разборные пластинчатые теплообменники. Однако надо учесть, что эти аппараты оснащаются прокладками из полимерных (резиновых) материалов, которые подвержены старению - растрескиваются, становятся хрупкими. После пяти лет эксплуатации при ремонте разборного пластинчатого теплообменника часто уже невозможно обеспечить его удовлетворительную плотность. А приобретение нового комплекта уплотнений обходится по цене, иногда почти сравнимой с ценой нового теплообменника.

Если уплотнения крепятся к пластинам клеем, то их замена связана с такими работами, как разрушение имеющихся уплотнений в жидком азоте и приклеивание новых. Для их проведения необходимы специальные приспособления и высококвалифицированный персонал. Производители теплообменников предоставляют заказчикам соответствующие услуги, но теплообменник зачастую требуется отправить на специализированное предприятие. Всё это привело к широкому применению в западных странах паяных пластинчатых теплообменников и для целей ГВС.

Отметим: сомнения относительно возможности применения паяных теплообменников в странах постсоветского пространства, связанные с плохим качеством теплоносителя, не обоснованны - жесткая вода встречается во всем мире. Следует лишь правильно отрегулировать ГВС и ограничивать температуру стенок теплообменника, как это описано в предыдущем разделе.

Паяные пластинчатые теплообменники подвергаются химической промывке. Если замечается недостаточные нагрев горячей воды или охлаждение обратной, а химический состав воды отличается повышенным содержанием солей жесткости, необходимо регулярно промывать теплообменник специальными растворами, которые не разрушают ни стенки теплообменника, ни медный припой. Заказчик может провести промывку своими силами: работа эта несложная, промывочные установки и реагенты доступны по цене и быстро окупаются.

При сверхвысоких температурах греющей воды (например, если соблюдается температурный график 150/70 °C), когда не исключено превышение температуры стенки теплообменника выше температуры, при которой происходит интенсивное образование накипи, требуется предварительное снижение температуры теплоносителя перед теплообменником. Для этого имеются два способа - насосная схема впрыскивания или элеваторная схема. В первом случае требуется отдельный датчик для включения насоса, расходуется существенное количество электроэнергии; применяемое оборудование подвержено износу. Элеваторная схема предельно проста, при термостатическом приводе не зависит от электрической сети и более экономична при реализации и эксплуатации (рис. 8 ). Подключение всасывающего патрубка элеватора к обратному трубопроводу системы отопления дает дополнительный эффект снижения температуры в обратном трубопроводе тепловых сетей.


Точечное решение
Двухступенчатая схема ГВС требует наличия двух теплообменников - для первой и второй ступеней. Выбор теплообменников по мощности, то есть разбиение общей мощности по ступеням, - непростая задача, требующая нескольких итераций при расчетах (их проведение - обязанность поставщика). Отсутствием серийно выпускаемых блоков ГВС с двухступенчатой схемой обусловлены определенные сроки поставки.

Два паяных теплообменника требуется обвязать между собой трубопроводами. Обвязка занимает место и обусловливает существенную часть стоимости двухступенчатого модуля ГВС. Поэтому производители начали выпускать паяные теплообменники с промежуточной разделительной стенкой и шестью штуцерами.

Обвязка тепловых пунктов на их основе упрощается, но проблемы с расчетом и отсутствием серийного производства остаются.

Кроме того, при эксплуатации бывают периоды, когда первая или вторая ступени системы оказываются не загруженными вообще. Так, в летний период достаточно было бы второй ступени, а в расчетной точке отопления - первой.

Автором данной статьи разработано и запатентовано решение для смешанной двухступенчатой схемы ГВС, включающей один серийно выпускаемый паяный пластинчатый теплообменник (рис. 9 ). Его суть состоит в применении специального штуцера, вставляемого в один из серийных штуцеров. Через этот штуцер подается и обратная вода из системы отопления, и горячая сетевая вода из тепловой сети. Теплообменная поверхность в любом режиме задействована полностью.

Рис.1. Типовая схема подключения бойлера.


Рис.2. Типовая схема проточного теплообменника с регулированием по первичной стороне теплообменника.


Рис.3. Типовая схема приготовления ГВС с регулированием температуры по вторичной стороне теплообменника.


Рис.4. Типовая схема приготовления ГВС с получение различной температуры с одного теплообменника по вторичной стороне теплообменника.


Рис.5. Типовая схема приготовления ГВС комбинированного типа при использовании постоянного пикового разбора ГВС.


Рис.6. Типовая схема приготовления ГВС комбинированного типа при использовании периодического пикового разбора ГВС.

Схема ГВС накопительного типа

Как правило, такая схема применяется для ГВС коттеджей. Разбор горячей воды в доме имеет периодический пиковый характер, т.е. он интенсивней во время завтрака, обеда и ужина. В качестве накопительной емкости используется бойлер.

Бойлер — это емкость, предназначенная для приготовления, аккумулирования и хранения ГВС. Наружная теплоизоляция бойлера выполнена из пенополиуретана, внутренняя поверхность бойлера покрыта стеклоэмалью, которая предотвращает образование известковой накипи, упрощает чистку и обеспечивает повышенную гигиеничность производимого ГВС. Внутри бойлера также установлен магниевый анод, он защищает его от блуждающих токов.

В тело бойлера вварена гильза для установки терморегулятора. Терморегулятором устанавливают температуру нагрева воды, по нормам температура воды не должна превышать 55-60°С, при более высокой температуре возможно получения ожога кожи. Объем бойлера зависит от количества проживающих людей и точек разбора горячей воды.

Нагревательный элемент бойлера может быть электрическим, водяным, а также возможно присутствие обоих типов нагревателей. Это так называемые бойлеры с комбинированными нагревом. Бойлеры с электрическим нагревом применяют там, где нет горячего теплоносителя, нагрев воды осуществляется встроенным электрическим нагревателем, а бойлеры с водяным нагревом применяют там, где есть горячий теплоноситель и нагрев воды осуществляется через встроенный теплообменник в виде змеевика. Комбинированные бойлеры имеют возможность в зимний период времени нагревать воду горячим теплоносителем от котельной, а в летний — электричеством. Такую комбинацию нагрева бойлера используют на Западе, поскольку стоимость энергоносителей там одинакова. В качестве горячего теплоносителя используется котловая вода котельной.

Типовая схема подключения бойлера к теплоносителю и холодному водоснабжению (далее ХВС) показана на рис. 1. Работа схемы для приготовления горячей воды, показанной на рис. 1, осуществляется следующим образом.

Как было описано выше, в тело бойлера вварена гильза, в которую установлен датчик регулируемого термостата. Этот термостат измеряет температуру воды в бойлере. Если измеренная температура в бойлере ниже установленной уставки термостата, то его контакты переходят в состояние «запроса» на приготовление ГВС. По этому сигналу происходит включение котла и насоса К2 в работу. При достижении температуры воды в бойлере установленной уставки термостата его контакты переходят в состояние «отбой запроса» на приготовление горячей воды, при этом котел и насос К2 переходят в отключенное состояние.

Ввод ХВС в бойлер осуществляется через обратный клапан, он предотвращает «уход» ГВС во время исчезновения ХВС. На входе в бойлер до его запорной арматуры установлен аварийный сбросной клапан К4, который защищает бойлер от высокого давления, и установлена расширительная емкость закрытого типа К5, для компенсации температурных расширений воды. Рециркуляция ГВС осуществляется от последнего водоразборного крана.

Для нормальной работы линии рециркуляции на ней установлен насос К3. Во время разбора горячей воды проток воды V1 идет от ХВС, когда нет разбора горячей воды, проток воды V2 идет с линии рециркуляции. Если самая дальняя точка разбора ГВС находится на расстоянии не более 7-8 м, то линией рециркуляции ГВС можно пренебречь.

При использовании линии рециркуляции ГВС особое внимание надо уделить монтажу труб горячей воды и трубы рециркуляции. Монтаж этих труб должен быть выполнен по правилам монтажа систем отопления, т.е. должен соблюдаться технологический уклон этих труб в сторону последнего водоразборного крана. Если труба горячей воды и рециркуляции проходит через «ворота», т.е. обходит дверной проем, то в верхней части этих «ворот» надо установить автоматические воздухоотводчики, т.е. следует предусмотреть удаление воздуха из труб во всех возможных местах его скопления. В противном случае линия рециркуляции работать не будет или будет работать не должным образом.

Схема ГВС проточного типа

Схему ГВС проточного типа как правило применяют на производствах для технологических линий, которые используют постоянный разбор ГВС.

В качестве нагревательного элемента ГВС используются теплообменники разных типов (пластинчатые, трубчатые и др.), однако большую популярность завоевали теплообменники пластинчатого типа.

Пластинчатые теплообменники малогабаритные по сравнению с бойлером и более эффективные, они используются практически во всех областях промышленности, где требуется провести теплообменный процесс. Конструкция пластинчатого теплообменника содержит набор гофрированных пластин, изготовленных из коррозионно-стойкого материала, с каналами для двух жидкостей, участвующих в процессе теплообмена. Пакет пластин размещен между опорной и прижимной плитой и закреплен стяжными болтами. Каждая пластина пластинчатого теплообменника снабжена прокладкой из термостойкой резины, уплотняющей соединение и направляющей различные потоки жидкостей в соответствующие каналы.

Необходимое число пластин определяется в соответствии с температурой, расходом воды и допустимой потерей напора. Пластинчатые теплообменники бывают разборные и паяные, они изготавливаются из нержавеющей стали, что позволяет их использовать в течение многих лет.

Типовая схема подключения пластинчатого теплообменника к теплоносителю и ХВС показана на рис. 2. Работа схемы для приготовления горячей воды осуществляется следующим образом. По первичной стороне теплообменника установлен насос со своим смесителем и сервоприводом. Температуру ГВС измеряют ПИД-регулятором К8, при пониженной температуре ГВС ПИД-регулятор подает сигнал на открытие смесителя, а при повышенной — на закрытие.

Принцип ПИД-регулирования состоит в следующем. Измеряемая температура ГВС сравнивается с уставкой (например, уставка равна 55-60°С), и чем выше разница между измеренной температурой и заданной уставки, тем больше по времени прибор К8 выдает сигнал на закрытие смесителя. По истечении установленного времени на измерение прибор К8 снова измеряет температуру ГВС и сравнивает ее с уставкой, разница температуры уменьшилась и прибор выдает более короткий по времени сигнал на закрытие смесителя.

Методом динамического приближения измеренная температура ГВС и уставки совпадут, ПИД-регулятор перестанет выдавать управляющие сигналы на смеситель. То же самое регулирование происходит и при пониженной измеренной температуре ГВС относительно уставки, в этом случае ПИД-регулятор будет выдавать сигнал на сервопривод для открытия смесителя.

При любом возмущении температуры ГВС ПИД-регулятор возобновит свою работу для получения требуемой температуры ГВС. При таком регулировании происходит смешивание горячей воды, поступающей от котла, и обратной воды, поступающей от теплообменника, таким образом поддерживается постоянная температура ГВС. Ввод ХВС на теплообменник осуществляется через обратный клапан, он предотвращает «уход» ГВС во время исчезновения ХВС. На входе в теплообменник до его запорной арматуры установлен аварийный сбросной клапан К4, который защищает теплообменник от высокого давления, и установлена расширительная емкость закрытого типа К5, для компенсации температурных расширений воды.

Рециркуляция ГВС осуществляется от последнего водоразборного крана. Схемы приготовления ГВС на теплообменниках должны работать только с линией рециркуляции, в редких случаях линия рециркуляции не используется. Для работы линии рециркуляции на ней установлен насос К3. Во время разбора горячей воды проток воды V1 идет от ХВС, когда нет разбора горячей воды, проток воды V2 идет с линии рециркуляции. Мы рассмотрели схему для приготовления ГВС на теплообменнике с регулированием температуры по первичной стороне теплообменника. На базе этой схемы существуют и ее разновидности, т.е. с регулированием температуры по вторичной стороне теплообменника. Эта схема показана на рис. 3.

Преимуществом этой схемы является то, что диаметр труб по вторичной стороне теплообменника как правило меньше диаметра труб, используемых на первичной стороне теплообменника. Это снижает стоимость сервопривода и незначительно упрощает монтаж. Кроме того, схема с регулированием температуры ГВС по вторичной стороне теплообменника позволяет получить несколько разных температур с одного теплообменника (рис. 4).

Монтаж труб ГВС должен быть выполнен по правилам монтажа систем отопления, т.е. должен соблюдаться технологический уклон этих труб в сторону последнего водоразборного крана. Если труба горячей воды и рециркуляции проходит через «ворота», т.е. обходит дверной проем, то в верхней части этих «ворот» надо установить автоматические воздухоотводчики, т.е. следует предусмотреть удаление воздуха из труб во всех возможных местах его скопления. В противном случае линия рециркуляции работать не будет или будет работать не должным образом.

Схема ГВС комбинированного типа

Схему ГВС комбинированного типа (т.е. проточный + накопительный водонагреватели) как правило применяют на производствах для технологических линий, которые используют постоянный и периодический пиковый разбор ГВС (рис. 5 и 6).

В качестве нагревательного элемента ГВС используется проточный теплообменник. Бойлер используется как накопитель тепловой энергии для пикового разбора ГВС. Теплообменник в бойлере не используется, поскольку он более инертный, чем теплообменник проточного типа. Схема, показанная на рис. 5, соответствует работе проточного теплообменника с регулированием по первичной стороне теплообменника (см. рис. 2), а схема, показанная на рис. 6, соответствует работе проточного теплообменника с регулированием по вторичной стороне теплообменника (рис. 3).

При регулировании по вторичной стороне теплообменника также возможно получить разные температуры ГВС, для этого достаточно усовершенствовать схему, как показано на рис. 4. Если схемы (рис. 5, 6) снабдить байпасными кранами, то появится возможность (с ухудшением качества ГВС) для «горячей» ревизии проточного и накопительного теплообменника. Требования к монтажу труб ГВС остаются прежними.



Понравилась статья? Поделитесь ей