Контакты

Одк ппу. Система одк для труб в изоляции ппу

ИВЦ «Технологика» предлагает современный оперативный дистанционный контроль за протечкой в трудопроводах - ОДК.

Если после прокладки трубопровода или в процессе эксплуатации тепловой сети в каком-нибудь стыке (месте сварки) появится течь воды, то ее наличие обнаруживается посредством определения пониженного сопротивления между сигнальными проводами, проложенными в пенополиуретане (ППУ-изоляции).

  • Обрыв медных сигнальных проводников;
  • Намокание теплоизоляционного слоя пенополиуретана (по причине нарушения герметичности либо металлической трубы либо наружной полиэтиленовой оболочки).
  • Обнаруживать дефект без нарушения режима работы теплосети.
  • Запоминать и хранить результаты измерений.

Диагностика трубопроводов тепловых сетей

Большая часть тепловых сетей в России имеют значительную изношенность. Это обусловлено активной коррозией наружной поверхности стального трубопровода. По данным, приведенным в статье "Пути снижения аварийности на тепловых и инженерных сетях предприятий", скорость коррозии на некоторых участках теплопровода достигает величины выше 1 мм/год. Это приводит к выходу из строя отдельных участков теплопровода уже через 5...7 лет после начала его эксплуатации.

В настоящее время для прокладки трубопроводов тепловых сетей все более широкое распространение получают трубы, предварительно теплогидроизолированные пенополиуретаном (ППУ-изоляция).

Такие трубы выпускаются с определенными строительными длинами и имеют внутри изоляционного слоя, покрывающего трубу, сигнальные линии.

При прокладке трубы сваривают, а соответствующие сигнальные провода от соседних труб соединяют между собой (рис. 1). Места сварки труб изолируют.

Рис.1 Пример образования линии сигнализации из проводников монтируемого трубопровода.

Если после прокладки трубопровода или в процессе эксплуатации тепловой сети в каком-нибудь стыке (месте сварки) появится течь воды, то ее наличие обнаруживается посредством определения пониженного сопротивления между сигнальными проводами, так как изоляция между сигнальными проводами намокает. Для этого используется стационарный детектор повреждений «Пиккон» (рис. 2).

Конкретное место намокания определяют при помощи прибора "Портативный цифровой рефлектометр РЕЙС-105М" или "Цифровой рефлектометр РЕЙС-205".

Система ОДК позволяет обнаружить следующие виды дефектов:

  • обрыв медных сигнальных проводников;
  • намокание теплоизоляционного слоя пенополиуретана (по причине нарушения герметичности либо металлической трубы либо наружной полиэтиленовой оболочки);
  • Обнаруживать дефект без нарушения режима работы теплосети;
  • Запоминать и хранить результаты измерений;
  • Обмениваться информацией с персональным компьютером.

По результатам измерений на трубопроводах составляется отчет, в котором указывается схема стыков трубопровода и данные импульсной рефлектометрии, по которым можно точно определить конкретное место намокания изоляции. Применение системы ОДК позволяет создать компьютерную базу данных с целью определения динамики развития дефектов изоляции и сигнальных систем контроля.

Монтаж проводников на заводе

Перед изготовлением ПИ трубы на заводе между полиэтиленовой защитной оболочкой и металлической трубой закрепляются две медные сигнальные проволоки, сконфигурированные определенным образом. Проводники должны иметь необходимое предварительное натяжение.

Монтаж проводников при строительстве.



1 - лента крепёжная;

2- втулка обжимная;

3- держатель проводов;

4- пенополиуритановая изоляция;

5- металлическая труба;

6 - сигнальные проводники;

7 - полиэтиленовая изоляция.

Особенности детектора

Стационарный детектор позволяет обеспечить постоянный контроль состояния трубопроводов. Детектор устанавливается стационарно и только на один объект. Детектор работает от источника переменного тока напряжением 220 Вольт. Детекторы могут контролировать на одном объекте одновременно от одного до четырех трубопроводов с независимыми системами контроля.

Рис.2 Стационарный детектор повреждений «Пиккон»

Детектор устанавливается в контрольной точке, которая должна предусматриваться и указываться в проекте системы ОДК.

В контрольной точке подсоединение детектора к сигнальным проводникам осуществляется при помощи специальных коммутационных терминалов марки ”КТ14” или ”КТ15” — соответственно для четырехканального и двухканального детектора.

Пример подсчёта стоимости системы ОДК для трубопровода.

Исходные данные

1. Схема трубопровода приведена в Приложении №1 .

3. Схема системы ОДК приведена в Приложении №2 .

2. Система теплоснабжения 2х трубная (n = 2).

Решение

1. Выбор приборов контроля

1.1 Определение типа приборов контроля.

Из приведенной схемы трубопровода видим, что проектируемый трубопровод заходит в ЦТП. В ЦТП есть возможность подвода электропитания 220В, следовательно, для контроля необходимо использовать стационарный двухканальный детектор повреждений "ПИККОН" ДПС2А.

1.2. Определение количества приборов.

Для стационарного детектора, согласно паспортным данным, максимальная длина контролируемого трубопровода равна одним каналом: L max . = 2500 метров.

Длина проектируемого участка равна: L пр. = 600+300+500+400+300 = 2100 м метров.

Так как L max . > L пр., то для данной трассы достаточно одного стационарного детектора.

2. Определение мест расположения контрольных точек

2.1. В т.к.1, там планируется подключать стационарный детектор повреждений.

2.2. Через 300 метров от т.к. 1

2.3. В месте бокового ответвления

2.4. В т.к. 2

2.5. Через 200 метров от т.к. 2

2.6. В т.к. 3

2.7. В т.к. 4

2.9. Через 250 метров от т.к.

3. Оснащение контрольных точек элементами системы контроля.

Характерная точка Элемент системы ОДК Кол-во Ед. Изм.
1 Детектор повреждений станционарный ”ПИККОН” ДПС-2АМ 1 шт.
Терминал коммутационный ”КТ15” 1 шт.
Импульсный рефлектометр «Рейс-105М» 1 шт.
Провод медный ММ 1,5 4200 М
2 Наземный ковер 1 шт.
1 шт.
2 шт.
3 Наземный ковер 1 шт.
Терминал промежуточный ”КТ12/Ш” 1 шт.
Комплект удлинения кабеля ”КУК5” 2 шт.
4 Наземный ковер 1 шт.
1 шт.
Комплект удлинения кабеля ”КУК5” 2 шт.
5 Наземный ковер 1 шт.
Терминал промежуточный ”КТ12/Ш” 1 шт.
Комплект удлинения кабеля ”КУК5” 2 шт.
6 Наземный ковер 1 шт.
Терминал соединительный ”КТ15/Ш” 1 шт.
Комплект удлинения кабеля ”КУК5” 2 шт.
7 Наземный ковер 1 шт.
Терминал промежуточный ”КТ12/Ш” 1 шт.
Комплект удлинения кабеля ”КУК5” 2 шт.
8 Наземный ковер 1 шт.
Терминал промежуточный ”КТ12/Ш” 1 шт.
Комплект удлинения кабеля ”КУК5” 2 шт.
9 Наземный ковер 1 шт.
Терминал концевой «КТ-11» 1 шт.
Комплект удлинения кабеля ”КУК5” 2 шт.

Точная стоимость работ определяется по техническому заданию, предоставленного заказчиком, в течение двух рабочих дней.

Система ОДК позволяет контролировать состояние трубопровода, оперативно сигнализировать о появившейся неисправности и точно указать место любого дефекта. Наличие системы ОДК значительно экономит денежные средства и сокращает время, затрачиваемое на обслуживание трубопровода.

Система контроля позволяет обнаружить следующие дефекты:

  • Повреждение металлической трубы (свищ).
  • Повреждение полиэтиленовой оболочки.
  • Обрыв сигнальных проводников.
  • Замыкание сигнальных проводников на металлическую трубу.
  • Плохое соединение сигнальных проводов на стыках.


Состав системы ОДК

Система оперативно-дистанционного контроля представляет собой специальный комплекс приборов и вспомогательного оборудования (которое в дальнейшем будет именоваться элементами системы ОДК) с помощью которого осуществляется контроль состояния трубо-провода. Исключение какого-либо элемента из состава системы нарушает ее целостность и нормативную функциональность.

В состав системы контроля входят следующие компоненты:

  • Сигнальные проводники
  • Контрольно-измерительное оборудование (Детекторы повреждений, импульсный рефлектометр – локатор, контрольно-монтажный прибор «Robin КМР 3050 DL»).
  • Коммутационные терминалы.
  • Соединительные кабели.
  • Наземные и настенные ковера.
  • Материалы и оборудование для монтажа.

Сигнальные проводники

Назначение

Все трубопроводы и фасонные изделия (тройники, отводы, задвижки, неподвижные опоры, компенсаторы) должны быть оснащены сигнальными проводниками. С помощью сигнальных проводов (по ним передается сигнал – ток или высокочастотный импульс) определяется со- стояние трубопровода.


Технические параметры

Конфигурация проводников

Сигнальные провода, устанавливаемые внутри теплоизоляционного слоя пенополиуретана, протягивают параллельно изготавливаемой трубе и геометрически располагают их на “3” и “9” или “2” и “10” часов.

Функциональное назначение проводников

Монтируемые провода абсолютно одинаковые, однако по назначению подразделяются на основной и транзитный провода.
Основной провод – это сигнальный проводник, заходящий при монтаже теплотрассы во все ее ответвления. Этот провод является главным для определения состояния трубопровода, так как повторяет его контур.
Транзитный провод – это сигнальный проводник, который не заходит ни в одно ответвление теплотрассы, а проходит по кратчайшему пути между начальной и конечной точкой трубопровода и в основном служит для образования сигнальной петли.


Монтаж проводников при строительстве

При строительстве теплотрассы монтаж проводников производится на стыковых соединениях трубопровода.
Монтаж проводов надо осуществлять таким образом, чтобы основной сигнальный провод находился справа по направлению подачи воды к потребителю на всех трубопроводах, а все боковые ответвления должны включаться в разрыв основного сигнального проводника. Боковые ответвления к транзитному проводу подключать запрещается.

Соединение проводов на стыках

Сигнальные провода соединяются между собой соответственно: основной с основным, а транзитный с транзитным.
С помощью пассатижей аккуратно выпрямляются и растягиваются скрученные в спираль провода и, не допуская изломов, располагаются параллельно внутри .
Провода зачищаются с помощью наждачной бумаги от остатков пены и краски, а затем тщательно обезжириваются.
Провода следует натянуть и отрезать лишние части таким образом, чтобы не было слабины при соединении.
Вставить концы проводов в обжимную гильзу и опрессовать гильзу с обеих сторон с помощью обжимных клещей.
После этого полученное соединение необходимо облудить с помощью неактивного флюса, припоя ПОС-61 и газового паяльника (или электрического, если есть электропитание 220В) соединение проводов нагревают паяльником, через несколько секунд оно нагревается до температуры плавления припоя.
Соединение запаяно правильно, в том случае, когда припой заполняет обжимную втулку с обеих сторон.
Для проверки правильности соединения необходимо потянуть за сигнальные провода, чтобы проверить, в порядке ли сращивание.
Вжать провода в специальные прорези в держатели проводов, предварительно прикрепленные к металлической трубе.

АССОЦИАЦИЯ ПРОИЗВОДИТЕЛЕЙ И ПОТРЕБИТЕЛЕЙ ТРУБОПРОВОДОВ С ИНДУСТРИАЛЬНОЙ

ПОЛИМЕРНОЙ ИЗОЛЯЦИЕЙ

Стандарт организации НП «Ассоциациация ППТИПИ»

СТО НП «Ассоциациация ППТИПИ» - * - 1 – 2012

ПРОЕКТИРОВАНИЕ, МОНТАЖ, ПРИЕМКА И ЭКСПЛУАТАЦИЯ

СИСТЕМЫ ОПЕРАТИВНО-ДИСТАНЦИОННОГО КОНТРОЛЯ (СОДК)

ТРУБОПРОВОДОВ С ТЕПЛОВОЙ ИЗОЛЯЦИЕЙ ИЗ ПЕНОПОЛИУРЕТАНА

В ПОЛИЭТИЛЕНОВОЙ ОБОЛОЧКЕ ИЛИ СТАЛЬНОМ ЗАЩИТНОМ
ПОКРЫТИИ

Первая редакция

М о с к в а

1. Общие положения. 2

2. Технические требования. 2

3. Проектирование СОДК. 6

4. Монтаж СОДК. 8

5. Приемка СОДК в эксплуатацию.. 11

6. Эксплуатация и ремонт СОДК. 13

7. Приложение. 14

8. Приложение. 15

9. Приложение. 18

10.Приложение. 19

11.Приложение. 20

12.Приложение. 21

1. Общие положения

1.1. Для трубопроводов с тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке или стальном защитном покрытии обязательно наличие системы оперативно-дистанционного контроля (СОДК), согласно ГОСТ п. 5.1.9.

1.2. Система оперативного дистанционного контроля (ОДК) предназначена для контроля состояния теплоизоляционного слоя пенополиуретана изолированных трубопроводов и обнаружения участков с повышенной влажностью изоляции.

1.3. Основой действия системы ОДК служит физическое свойство пенополиуретана, заключающееся в уменьшении значения электрического сопротивления (Rиз.) при увеличении влажности (в сухом состоянии сопротивление изоляции стремится к бесконечности).

1.4. Система ОДК состоит из следующих элементов:

Сигнальные проводники в теплоизоляционном слое трубопроводов, проходящие по всей длине теплопроводов.

Кабели (или готовые комплекты удлинения кабеля).

Терминалы (монтажные коробки с кабельными вводами, клеммной колодкой и разъемами).

Детектор повреждений стационарный и переносной.

Локатор повреждений переносной (импульсный рефлектометр) или стационарный.

Контрольно-монтажный тестер (высоковольтный мегомметр с функцией измерения сопротивления проводников).

Ковера наземные и настенные.

Инструменты для монтажа СОДК.

Расходные материалы для монтажа СОДК.

1.5. Сигнальные проводники предназначены для передачи тока или высокочастотного импульса от приборов контроля с целью определения состояния трубопровода.

1.6. Кабель предназначен для соединения сигнальных проводников расположенных в ППУ-изоляции трубопровода с терминалами в точках контроля.

1.7. Терминалы предназначены для подключения приборов контроля и соединения сигнальных проводников (кабеля) в точках контроля.

1.8. Детекторы предназначены для определения состояния изоляции трубопровода и целостности сигнальных проводников.

1.9. Локаторы предназначены для поиска мест увлажнения изоляции трубопровода и мест повреждений сигнальных проводников.

1.10. Контрольно-монтажный тестер предназначен для проверки состояния изоляции (измерение сопротивления изоляции Rиз.) и целостности проводников системы контроля (измерение сопротивления сигнальных проводников Rпр.) как отдельных элементов трубопровода, так и смонтированного и готового для эксплуатации трубопровода.

1.11. Ковер (металлический «шкаф» антивандального исполнения) предназначен для установки в нем терминалов и защиты элементов системы ОДК от воздействия окружающей среды и несанкционированного доступа.

1.12. Инструменты и расходные материалы предназначены для формирования высокотехнологичного соединения сигнальных проводников, подсоединения кабеля, подключения терминалов и детекторов.

1.13. Точка контроля - предусмотренное проектом и обустроенное место доступа к системе ОДК.

1.14. Сигнальная линия – основной или транзитный сигнальный проводник системы ОДК трубопровода между начальной и конечной точками контроля.

1.15. Сигнальный контур – два сигнальных проводника системы ОДК трубопровода между начальной и конечной точками контроля, объединенные в единую электрическую цепь.

1.16. Оценка работоспособности СОДК осуществляется с помощью контрольно-монтажного тестера, путем проведения измерений фактических значений сопротивления изоляции и сопротивления сигнальных проводников и дальнейшего их сравнения с рассчитанными по нормативам значениям (см. п. 5.4. ÷ 5.7. ).

1.17. По согласованию с эксплуатирующей организацией допускается применение иных систем ОДК, монтаж, контроль и настройка которых должна производиться по соответствующей технической документации производителя.

2. Технические требования

2.1. Теплоизоляция стальных труб, фасонных изделий и деталей должна иметь не менее двух линейных сигнальных проводников системы ОДК. Сигнальные проводники следует располагать на расстоянии 20 ± 2 мм от поверхности стальной трубы и геометрически на 3 и 9 часов.

2.2. Для трубопроводов с диаметром металлической трубы 530 мм и выше рекомендуется устанавливать три проводника. Третий провод называется резервным, труба ориентируется в траншее таким образом, чтобы он располагался в верхней части трубы на «12 часов».

2.3. В качестве сигнального проводника используется провод из медной проволоки марки ММ 1,5 (сечение 1,5 мм2, диаметр 1,39 мм).

2.4. Электрическое сопротивление сигнальных проводников, изготовленных из проволоки марки «ММ 1,5», должно находиться в диапазоне 0,010÷0,017 Ом на 1 п. м. проволоки (при температуре от −15 до +150ºС).

2.5. Запрещается использование проводников в изоляционной оплетке (кроме гибких стальных трубопроводов) и проводов покрытых лаком.

2.6. Сигнальные проводники должны выводиться из трубопровода через концевые и промежуточные элементы трубопровода с кабелем вывода. Конструкция и технология изготовления элемента трубопровода с кабельным выводом должна обеспечивать герметичность в течение всего срока службы трубопровода. Для изготовления вышеуказанных элементов рекомендуется использовать специальное изделие - вварные (сварные) кабельные выводы с предварительно запаянным кабелем.

2.7. Один из проводников должен быть промаркирован. Маркированный проводник называется основным, а не маркированный – транзитным. Маркировка проводника осуществляется либо методом «лужения» всего проводника (до его установки в трубу), либо окрашиванием краской выступающих из изоляции частей одного проводника с обеих сторон трубы.

2.8. Резервный провод предназначен для использования его взамен одного из двух других проводов при условии их повреждения. Резервные провода на стыках трубопровода между собой необходимо соединять на всем протяжении трубопровода. Резервный провод в концевых и промежуточных элементах трубопровода с кабелем вывода не выводить из-под изоляции.

2.9. В гибких стальных трубопроводах в качестве сигнальных проводников используются медные изолированные провода, сплетенные в единый жгут.

2.10. Маркировка проводников для гибких стальных трубопроводов согласно инструкции производителя:

Провод в белой влагопроницаемой оболочке, имеющий сечение 0,8 мм2 (электрическое сопротивление должно находиться в диапазоне 0,019÷0,032 Ом на 1 п. м. при t = −15÷150ºС), выполняет функцию основного сигнального провода;

Провод в зеленой влагонепроницаемой оболочке, имеющий сечение 1,0 мм2 (электрическое сопротивление должно находиться в диапазоне 0,015÷0,026 Ом на 1 п. м. при t = −15÷150ºС), выполняет функцию транзитного провода.

2.11. Система ОДК гибких предварительно изолированных стальных трубопроводов совместима с системой ОДК предварительно изолированных жестких стальных трубопроводов. Совмещение возможно через терминал.

2.12. Для системы ОДК гибких стальных трубопроводов используются те же самые контрольно-измерительные приборы и оборудование, что применяются для жестких стальных предварительно изолированных трубопроводов.

2.13. Для соединения сигнальных проводников и подключения приборов контроля необходимо использовать терминалы. Типы терминалов, их назначение и условные обозначения указаны в Приложении №1 .

2.14. Установка терминалов имеющих наружные разъемы и класс защиты от воздействия окружающей среды IP54 и ниже в помещениях с повышенной влажностью (тепловые камеры, подвалы домов с угрозой затопления и т. п.) запрещена.

2.15. В точках контроля, имеющих высокую влажность воздуха необходимо использовать терминалы с классом защиты IP65 и выше. Если в данной точке необходимо использовать терминал с наружными разъемами для подключения детектора, то рекомендуется использовать терминалы с герметичными наружными разъемами.

2.16. С целью соблюдения правил проектирования и монтажа сигнальных проводников на ответвлениях трубопровода (п. п. 3.8., 3.9., 4.14. ) рекомендуется использовать тройники с универсальной схемой расположения проводников (см. Приложение ), которая позволяет использовать один типовой тройник для ответвлений, как в правую, так и в левую сторону.

2.17. В точках контроля и транзитах в камерах и подвалах домов в качестве соединительных кабелей применяется кабель марки NYY или NYM (3х1,5 и 5х1,5) с сечением токопроводящей жилы 1,5 мм2 и цветовой маркировкой жил.

2.18. В точках контроля соединительные кабели должны коммутироваться с сигнальными проводниками только через герметичные кабельные выводы концевых и промежуточных элементов трубопровода.

2.19. Для наращивания кабеля до проектной или требуемой длины рекомендуется использовать готовые комплекты удлинения кабеля: для трехжильного кабеля - комплект «КУК-3» и для пятижильного кабеля - комплект «КУК-5», в которых предусмотрено использование наборов термоусаживаемых трубок с внутренним клеевым слоем.

2.20. Соединение жил кабелей марки NYM 3х1,5 в концевых точках контроля с сигнальными проводниками в изолированной трубе должно производиться в соответствии цветовой маркировкой (см. Приложение, таб.2 ).

2.21. Соединение жил кабелей NYM 5х1,5 в промежуточных точках контроля с сигнальными проводниками в изолированной трубе должно производиться в соответствии с цветовой маркировкой (см. Приложение, таб.3 ).

2.22. Контакт желто-зеленой жилы со стальным трубопроводом "заземление" должен обеспечиваться с помощью разъемного резьбового соединения (гайка с шайбой на болт, приваренный к стальному трубопроводу).

2.23. Для обеспечения непрерывного мониторинга состояния изоляции трубопровода контроль осуществлять (и предусматривать в проектах по СОДК) с помощью стационарных приборов контроля, оснащенных визуальной или звуковой сигнализацией. В случае невозможности подключения стационарных приборов (по причине отсутствия электропитания 220В или из-за невозможности обеспечения сохранности оборудования) рекомендуется использовать переносной детектор с автономным питанием. Переносной детектор позволяет обеспечить периодический контроль.

2.24. Технические параметры применяемых детекторов должны быть унифицированными:

Пороговое значение сопротивления изоляции (Rиз.) для срабатывания сигнала «намокание» должно быть в диапазоне от 1 до 5 кОм.

Пороговое значение сопротивления сигнальных проводников (Rпр.) для срабатывания сигнала «обрыв» должно быть в диапазоне 150 ÷ 200 Ом ±10%.

2.25. В стационарных детекторах должна быть реализована электрическая развязка по каналам, что обеспечивает отсутствие взаимного влияния их показаний.

2.26. В целях повышения информативности контроля за состоянием трубопровода рекомендуется применение многоуровневых детекторов повреждений. Наличие в детекторе нескольких уровней индикации сопротивления изоляции позволяет контролировать скорость намокания изоляции, что характеризует опасность дефекта.

2.27. Для обеспечения постоянного контроля, повышения оперативности устранения дефектов и уменьшения эксплуатационных затрат, рекомендуется использовать стационарные приборы с возможностью подключения к системам диспетчеризации.

2.28. Система диспетчеризации – это система сбора данных с разноудаленных объектов на единый диспетчерский пункт, связь между которыми осуществляется:

По выделенным или коммутируемым кабельным линиям;

Посредством GSM связи;

По радиоканалу.

2.29. Системы диспетчеризации должны реализовать следующие функции:

Круглосуточное наблюдение за состоянием объектов и значениями параметров;

Выбор и архивация параметров с возможностью построения графиков;

Оповещение об отказах системы по SMS и электронной почте.

2.30. Основой оборудования для передачи данных, установленного в тепловом пункте, является многофункциональный контроллер. Контроллер – это аппаратное средство, предназначенное для сбора информации, первичной ее обработки и передачи на диспетчерский пункт. К модулю ввода контроллера подключаются стационарные детекторы состояния трубопроводов с ППУ-изоляцией. Данные, получаемые от подключенных приборов, передаются на диспетчерский пункт по выбранному каналу связи (кабельная линия, GSM - связь, радиоканал), где обрабатываются, визуализируются, архивируются и хранятся. В случае нештатных ситуаций сигнал с контроллера в режиме «real-time» передается на диспетчерский пункт.

2.31. Базовым способом передачи данных от детектора к контроллерам являются соединения типа «Сухой контакт» и «Токовый выход», которые применимы во всех существующих системах диспетчеризации.

2.32. Определение места неисправности системы ОДК (увлажнение или обрыв сигнального проводника) осуществляется локатором повреждений, являющимся переносным импульсным рефлектометром.

2.33. Локатор, применяемый для определения мест повреждений трубопровода должен иметь следующие характеристики:

Обеспечивать возможность определения вида и мест дефектов с погрешностью не более 1% от измеряемой длины сигнального проводника;

Дальность (диапазон) измерений не менее 100 м;

Внутреннюю память для регистрации результатов измерений с объемом, который позволяет записывать и хранить не менее 20 рефлектограмм;

Функцию обмена информацией с персональным компьютером (допускается использовать рефлектометр с портативным печатающим устройством).

2.34. Проверка состояния изоляции элементов трубопровода должна производиться высоковольтным мегаомметром (контрольно-монтажным тестером) с контрольным напряжением 500В. Нормативное сопротивление изоляции одного элемента длиной 10 м должно быть не менее 30 МОм.

2.35. Проверка целостности сигнальных проводников должна проводиться тестером, имеющим функцию измерения сопротивления проводников, либо с помощью цифрового мультиметра.

2.36. Для снижения ошибок оператора при работе с тестером рекомендуется использовать тестеры с цифровым отображением значений измеряемых параметров.

2.37. Тестер должен иметь функцию переключения (выбора) контрольного напряжения: 250 и 500В.

2.38. Конструкция ковера должна соответствовать следующим требованиям:

Обеспечивать сохранность размещенного в нем оборудования;

Обеспечивать удобство обслуживания и эксплуатации СОДК;

Исключать процесс образования конденсата на элементах терминала и проникновения влаги;

2.45. Применяемые для контроля состояния трубопровода сигнальные проводники, детекторы, терминалы, локаторы (рефлектометры), тестеры и кабель должны иметь необходимые сертификаты (соответствия, средств измерений и т. п.) и соответствовать нормативной документации.

3. Проектирование СОДК

3.1. Обязательной составной частью проекта теплосети из предизолированных труб является проект на систему ОДК.

3.2. Проект на систему ОДК разрабатывается на основании технического задания от эксплуатирующей организации и проекта на прокладку трубопроводов, а также данным Стандартом и Инструкциями производителей от производителей оборудования для систем контроля. В техническом задании должно быть указано место установки стационарных приборов контроля, и другие специальные требования.

3.3. Проект на систему ОДК должен содержать: пояснительную записку , графическое изображение схемы системы контроля, схемы электрических соединений.

3.4. В пояснительной записке должен быть обоснован выбор терминалов и приборов контроля – детекторов повреждений, обоснованы и определены места точек контроля и их оснащение, а также произведен расчет расходных материалов. Записка должна содержать таблицу характерных точек, таблицу точек контроля, таблицу маркировки кабелей. Образцы таблиц указаны в Приложении №4 .

3.5. Графическая схема системы контроля должна содержать следующие данные:

Характерные точки трубопровода (углы поворотов трубопровода, ответвления, неподвижные опоры, запорная арматура, компенсаторы, переходы диаметров, окончания трубопровода, контрольные точки), соответствующие плану трассы;

Точки контроля;

Таблицу условных обозначений всех используемых элементов СОДК.

3.6. По итогам разработки проекта должна быть составлена спецификация на комплектующие системы контроля и расходные материалы с указанием точек установки.

3.7. На схеме электрических соединений должен быть отображен порядок подключения соединительных кабелей к терминалам (коммутация проводников внутри терминала) и порядок подключения кабелей к сигнальным проводникам трубопровода. Порядок соединения проводников кабеля внутри терминала должен быть указан в паспорте на подключаемый терминал и браться за основу при составлении электрической схемы. Порядок подключения кабелей к сигнальным проводникам трубопровода указан для каждого типа кабеля в Приложении №3 .

3.8. В качестве основного сигнального провода используется провод, расположенный справа по направлению подачи воды к потребителю на обоих трубопроводах – на схемах СОДК при проектировании обозначается пунктирной линией. Второй сигнальный проводник является транзитным – на схемах обозначается сплошной линией.

3.9. Все боковые ответвления должны включаться в разрыв основного сигнального провода. Запрещается подключать боковые ответвления к медному проводу, расположенному слева по ходу подачи воды к потребителю (транзитному).

3.10. Проектирование систем ОДК необходимо осуществлять с возможностью присоединения проектируемой системы к действующим системам ОДК и планируемым в будущем.

3.11. В состав точки контроля входят: элемент трубопровода с кабельным выводом, кабель, терминал и, по необходимости, ковер и детектор.

3.12. Выбор детекторов повреждений (переносной или стационарный) должен осуществляться на основании возможности обеспечения постоянного контроля (см. п.2.23, п.2.26, п.2.27 ). Тип стационарного детектора (двух - или четырехканальный) зависит от количества трубопроводов проектируемой теплотрассы. Количество стационарных детекторов определяется соответствием длины проектируемого трубопровода с диапазоном действия выбранного детектора. На каждом сигнальном контуре проектируемой теплосети должно быть установлено не более одного стационарного детектора.

3.13. Выбор того или иного типа терминала зависит от назначения точки контроля в которой предусматривается установка данного терминала (см. Приложение ).

3.14. На концах теплосети необходимо обустройство концевых точек контроля, где устанавливаются концевые терминалы , один из которых может иметь выход на стационарный детектор.

3.15. На конце трубопровода, где отсутствует точка контроля, сигнальные проводники должны быть закольцованы в концевом элементе под металлической заглушкой изоляции.

3.16. На границе сопрягаемых проектов тепловых сетей в местах их соединения, в том числе предназначенных на перспективу, необходимо предусматривать точки контроля и устанавливать один терминал , допускающий как объединение, так и разъединение системы ОДК этих участков.

3.17. Промежуточные точки контроля необходимо предусматривать на расстоянии не более 300 м (по длине сигнальной линии) от ближайшей точки контроля.

3.18. В промежуточных точках контроля устанавливаются промежуточные терминалы .

3.19. Для повышения надежности системы ОДК рекомендуется устанавливать в промежуточных точках контроля терминалы с классом защиты IP 65 и выше.

3.20. Для участка трубопровода длиной более 40 метров необходимо устройство точек контроля с двух сторон участка: концевой и промежуточной точки контроля.

3.21. В начале боковых ответвлений длиной более 40 м необходимо обустройство промежуточной точки контроля, где ставится промежуточный терминал вне зависимости от расположения других точек контроля на основном трубопроводе.

3.22. Правило указанное в п.3.21 не распространяется на случай, когда боковое ответвление трубопровода происходит в тепловой камере в которой трубопровод будет проложен без системы ОДК. В этом случае промежуточная точка контроля не предусматривается, а обустраивается только точка контроля в камере на ответвлении (см. п.3.25 ÷ 3.28 ).

3.23. Для боковых ответвлений длиной менее 40 метров допускается обустройство одной точки контроля: либо промежуточной точки контроля в начале ответвления либо концевой точки контроля в конце ответвления. Выбор места расположения точки контроля определяется по согласованию с эксплуатирующей организацией.

3.24. При необходимости установки в точках контроля кабеля длиной более 10 м следует устанавливать дополнительную точку контроля с установкой в ней проходного терминала как можно ближе к трубопроводу.

3.25. В тепловых камерах (и других подобных объектах), где проектируемый трубопровод будет проложен без системы контроля необходимо предусматривать концевые точки контроля и устанавливать проходной терминал .

3.26. В тепловых камерах (и других подобных объектах), где проектируемый трубопровод будет проложен без системы контроля (из-за отсутствия предварительно изолированных элементов трубопровода) необходимо устанавливать концевые элементы трубопровода с герметичным кабельным выводом и металлической заглушкой изоляции.

3.27. При последовательном соединении проводников системы ОДК в местах окончания изоляции (проход трубопроводов через тепловые камеры, подвалы зданий и т. п.) соединения проводников требуется выполнять с помощью кабеля (или комплектов удлинения кабеля) и только через проходные терминалы .

3.28. В тепловых камерах (и других подобных объектах), где проектируемый трубопровод будет проложен без системы контроля и разветвляется в 3 или 4 направления, необходимо предусматривать концевые точки контроля и устанавливать проходной терминал .

3.29. Для повышения надежности системы ОДК рекомендуется устанавливать проходные терминалы с классом защиты IP 65 и выше.

3.30. Выбор типа используемого кабеля зависит от типа точки контроля: в промежуточных точках используется пятижильный кабель, а в концевых точках – трехжильный.

3.31. Транзитные кабели, соединяющие терминалы, могут иметь произвольную длину. Суммарная длина сигнального контура с транзитным кабелем не должна превышать диапазон действия детекторов.

3.32. Установка терминалов в промежуточных и концевых точках контроля осуществляется в наземных (КНЗ) или настенных (КНС) коверах. Конструкция ковера регламентируется техническим заданием. В концевых точках трубопровода допускается установка терминалов в ЦТП, котельных и других подобных объектах без коверов.

3.33. Установка коверов в подземном исполнении без надлежащей герметизации ковера запрещена.

3.34. Расчет количества расходных материалов для монтажа системы ОДК производится на основании норм расхода. Нормы расхода указаны в Приложении №5.

4. Монтаж СОДК

4.1. Монтаж системы ОДК должен проводиться в соответствии со схемой, разработанной в проекте и согласованной с эксплуатирующей организацией.

4.2. Монтаж СОДК должны выполнять специалисты, прошедшие обучение в центрах подготовки производителей оборудования для систем контроля и предизолированных труб.

4.3. Монтаж СОДК заключается в соединении сигнальных проводников на стыках трубопровода, подсоединении кабеля к «элементам трубопровода с кабелем вывода», установке коверов, подключении терминалов к кабелю, подключении стационарного детектора.

4.4. Работы по монтажу системы ОДК, по соединению сигнальных проводников на стыках трубопровода, по наращиванию кабеля производить по технологическим инструкциям производителя или поставщика комплектующих системы ОДК и с использованием специальных инструментов и монтажных комплектов.

4.5. Необходимо осуществлять проверку состояния изоляции и целостности сигнальных проводов системы ОДК перед началом монтажа трубопровода. Оценку работоспособности СОДК осуществлять согласно п. 5.4. ÷ 5.7. Целью проверки перед монтажом трубопровода является обнаружение дефектов, которые могли образоваться во время транспортировки, хранения и погрузо-разгрузочных работ. Проверке должен подвергаться каждый элемент трубопровода.

4.6. При монтаже трубопроводов элементы трубопроводов необходимо ориентировать таким образом, что бы основной сигнальный проводник располагался всегда справа по направлению движения теплоносителя к потребителю как по подающему так и по обратному трубопроводу.

4.7. При монтаже трубопроводов элементы трубопроводов необходимо ориентировать таким образом, что бы расположение проводников было в верхней части стыка, исключая нижнюю четверть.

4.8. Монтаж элемента трубопровода с кабелем вывода необходимо производить с учетом направления подачи теплоносителя подающего трубопровода. Контрольная стрелка на оболочке должна совпадать с направлением подачи теплоносителя к потребителю. На обратной трубе монтаж элемента трубопровода с кабелем вывода производится по направлению подачи теплоносителя прямой трубы.

4.9. Монтаж сигнальных проводников осуществлять после сварки стальной трубы.

4.10. Во время сварки защитить проводники. До применения приборов СОДК убедиться, что сварочные работы на трубопроводе закончены.

4.11. Перед соединением проводников на стыках сваренного трубопровода необходимо на каждом стыке производить проверку работоспособности системы контроля согласно п.5.4. ÷ 5.7. .

4.12. Сигнальные проводники на стыках соединять в строго указанном порядке: основной сигнальный провод соединять с основным, а транзитный соединять с транзитным. Перехлест проводников на стыке запрещен.

4.13. Резервный проводник, применяемый в трубопроводах с диаметром 530 мм и более, на стыках трубопровода рекомендуется соединять, но не выводить из изоляции, т. к. в работе системы СОДК не задействуется.

4.14. Все боковые ответвления трубопровода должны включаться в разрыв основного сигнального провода (см. Приложение ). Запрещается подключать боковые ответвления к транзитному проводу.

4.15. При изоляции стыков сигнальные проводники смежных элементов трубопроводов должны соединяться посредством медных обжимных втулок с обязательной последующей пайкой места соединения проводников.

4.16. Обжим втулок осуществлять только с помощью специальных обжимных клещей. Запрещается обжимать втулки пассатижами и другим подобным инструментом.

4.17. Пайку проводников осуществлять с помощью переносного газового паяльника со сменными или заправляемыми газовыми баллонами либо электрическим паяльником.

4.18. Пайку проводников осуществлять с использованием только неактивного флюса и припоя.

4.19. Сигнальные проводники, соединенные в стыках трубопровода, обязательно фиксировать в специальных держателях (стойках для крепления проводников) – не менее 2 штук на один проводник.

4.20. Держатели проводников на стыках крепить к металлической трубе с помощью крепежной ленты. Запрещается крепление держателей с помощью полихлорвиниловой изоляционной ленты. Запрещается крепление держателей к трубе поверх установленного в них проводника.

4.21. По окончании изоляции стыков по всей длине трубопровода либо по участкам производится оценка работоспособности СОДК согласно п. 5.4. ÷ 5.7.

4.22. После завершения работ по монтажу стыковых соединений необходимо произвести обустройство контрольных точек и укомплектовать их оборудованием согласно спецификации проекта.

4.23. Соединительные кабели трубопроводов должны иметь маркировки, идентифицирующие соответствующие трубы и кабели. В маркировке рекомендуется указывать следующие данные: номер характерной точки, где подключен кабель, номер характерной точки, в сторону которой направлены сигнальные проводники по данному кабелю и его фактическая длина.

4.24. Соединительные кабели должны присоединяться к сигнальным проводникам через герметичные кабельные выводы с помощью наборов термоусадочных трубок с внутренним клеевым слоем.

4.25. Соединение жил кабелей в точках контроля с сигнальными проводниками в изолированной трубе должно производиться в соответствии с цветовой маркировкой (см. Приложение ).

4.26. Соединительный кабель от трубопровода с герметичным кабельным выводом до ковера должен прокладываться в оцинкованной трубе диаметром 50 мм. Сварка (пайка) защитной оцинкованной трубы с проложенным в ней кабелем запрещается.

4.27. Прокладку соединительного кабеля внутри зданий (сооружений) до места установки терминалов или в месте разрыва тепловой изоляции (в тепловой камере и т. п.) также необходимо осуществлять в оцинкованной трубе диаметром 50 мм, закрепляемой к стене скобами. Внутри зданий допускается применение защитных гофрированных шлангов.

4.28. Подключение соединительных кабелей к терминалам в точках контроля должно выполняться в соответствии с цветовой маркировкой и инструкцией по эксплуатации (паспорт прибора), прилагаемой к каждому терминалу. Длина кабеля должна обеспечивать возможность извлечения терминала для проведения измерений и ремонта.

4.29. Монтаж терминалов должен выполняться в соответствии с инструкцией по эксплуатации (паспорт прибора), прилагаемой к каждому терминалу.

4.30. На терминалах должны быть закреплены бирки (алюминиевые или пластмассовые) с маркировкой, определяющей направление измерений согласно п.4.23 .

4.31. Монтаж стационарных детекторов и их подключение к терминалам должно выполняться в соответствии с инструкцией по эксплуатации (паспорт прибора), прилагаемой к каждому детектору.

4.32. Места крепления детекторов в точках контроля к стене согласовывать с эксплуатационной организацией.

4.33. Переносной детектор повреждений и импульсный рефлектометр (локатор) на трассе стационарно не устанавливаются, а подключаются к системе ОДК по мере необходимости и согласно правилам эксплуатации.

4.34. Каждый ковер после установки должен быть промаркирован. Маркировку наносить в соответствии с требованиями эксплуатирующей организации. В маркировке указывается номер характерной точки, в которой он установлен, и номер проекта.

4.35. После монтажа системы ОДК следует выполнить ее исполнительную схему, включая:

Графическое изображение расположения и соединения сигнальных проводников трубопровода;

Обозначение мест расположения строительных и монтажных конструкций, относящихся к проектируемому трубопроводу (домов, ЦТП, камер и т. п.);

Места характерных точек;

Таблицу характерных точек;

Таблицу условных обозначений всех используемых элементов СОДК;

Таблицу маркировки соединительных кабелей или терминалов;

Спецификацию применяемых приборов и материалов.

4.36. По окончании монтажа системы ОДК (работы согласно п.4.3. ) должно проводиться обследование, включающее:

Измерение сопротивления изоляции по каждому сигнальному проводнику (сопротивление сигнальной линии);

Измерение сопротивления петли сигнальных проводников (сопротивление сигнального контура);

Измерение длины сигнальных проводников и длин соединительных кабелей во всех точках контроля;

Запись рефлектограмм сигнальных проводников.

Все результаты изменений вносятся в акт работоспособности системы контроля (Приложение ).

4.37. Проверку работоспособности системы ОДК отдельных элементов трубопровода производить тестером с напряжением 500В, а проверку трубопровода c полностью смонтированной СОДК – 250В.

4.38. Для исключения повреждений стационарных приборов и искажений в показаниях тестера необходимо отсоединять стационарные приборы контроля от системы ОДК при проведении измерений.

5. Приемка СОДК в эксплуатацию

5.1. Приемка систем ОДК должна осуществляться комиссией в составе представителей:

Организации, производившей монтаж и наладку системы ОДК;

Эксплуатирующей организации;

Организации, производящей контроль состояния ППУ-изоляции и системы ОДК (в случае, если контроль ведется сторонней организацией).

5.2. При приемке в эксплуатацию системы ОДК должна быть предоставлена следующая документация и оборудование:

Исполнительная схема системы контроля (если смонтированная схема системы контроля отличается от проектной, то все изменения должны быть учтены в исполнительной схеме);

Схема стыков (на схеме стыков должно быть указано в метрах расстояние между каждым стыком, а также должны быть обозначены характерные точки в соответствии со схемой системы ОДК);

План теплотрассы в масштабе 1:2000;

План теплотрассы в масштабе 1:500 с геодезической привязкой коверов СОДК;

Гарантийное письмо от строительной организации сроком на пять лет;

Акт работоспособности системы контроля;

Приборы контроля (детекторы повреждений, локаторы и т. п.) с комплектующими изделиями (если есть) и с технической документацией по их эксплуатации - согласно проекту;

Система ОДК (оперативно-дистанционного контроля) служит для выявления механических либо химических (обусловленных коррозией) повреждений изотермических трубопроводов, проложенных воздушным либо подземным способом. На сегодняшний день она получила широкое распространение, используясь в составе трубопроводов самого разного назначения (в том числе и коммунальных).

К важным особенностям системы ОДК следует отнести:

  • высокий уровень автоматизации процесса поиска повреждений;
  • его непрерывность;
  • точность обнаружения мест повреждений;
  • надежность и защищенность системы от сбоев при любых эксплуатационных условиях;
  • сравнительно невысокая стоимость компонентов системы;
  • простота использования.

Целью использования системы ОДК являются:

  • обнаружение мест разгерметизации обслуживаемого трубопровода;
  • обнаружение мест разгерметизации его наружной оболочки.

Кроме того, система ОДК способна выявлять и собственные неисправности, среди которых

  • нарушение целостности проводников-детекторов;
  • плохое стыковое соединение проводников-детекторов;
  • замыкание проводников-детекторов на трубу.

Система ОДК: принцип действия

Принцип действия системы ОДК базируется на основах технологии импульсной рефлектометрии. В соответствии с ней проводник-индикатор выступает импульсным излучателем, труба и наружная оболочка - отражателями, а теплоизоляционный слой - средой с определенными волновыми свойствами. Именно на постоянстве этих свойств и строится работа механизма.

В случае намокания теплоизоляционного слоя его волновые свойства изменяются в сторону снижения сопротивления и, как следствие, увеличения проводимости. Это сразу же обнаруживается специальными контрольно-измерительными приборами, совмещающими в себе функции рефлектометра и мегомметра.

Повышение влажности теплоизоляционного слоя, смонтированного по всем правилам изотермического трубопровода, может быть вызвано либо повреждением трубы и утечкой передаваемой по ней среды, либо повреждением наружной оболочки и попаданием внутрь влаги атмосферного воздуха (как вариант - грунта). В любом случае необходим ремонт.

Современные системы ОДК имеют несколько ступеней срабатывания. Это дает возможность не только обнаружить сам факт разгерметизации и установить ее место, но и определить масштабы возможных повреждений. Точность обнаружения при этом весьма высока, а вероятность ошибки равняется нулю.

Система ОДК: состав оборудования

Стандартная система ОДК имеет три технологических уровня

  • проводники-детекторы из медной проволоки (диаметр сечения проволоки 1,5 мм) с кабелями вывода;
  • коммутационные терминалы для подключения контрольно-измерительных приборов, устанавливаемые в коверах (специальных металлических ящиках сейфового типа, которые выпускаются в настенном и наземном исполнении);
  • стационарные либо мобильные контрольно-измерительные приборы, именуемые также «локаторами повреждений».

Структура системы ОДК универсальна. Это дает возможность легко расширять и перестраивать ее, обеспечивая как можно более полный и максимально эффективный мониторинг технического состояния трубопроводных коммуникаций.

Процедура использования системы ОДК предельно проста. Она включает в себя следующие технические действия:

  • проверка готовности контрольно-измерительного прибора и целостности проводниковой сети (самоконтроль);
  • снятие данных;
  • сохранение данных для дальнейшего анализа.

Периодичность контрольных мероприятий с использованием системы ОДК законодательно не регламентируется и устанавливается организациями-эксплуатантами в индивидуальном порядке.

Статья расскажет, как работает система ОДК в ПИ-трубах и как сделать ее правильно. Информация полезна тем, кто хочет сэкономить и выполнить монтаж самостоятельно, и тем, кто уже имеет опыт использования такой теплосети, но дистанционный контроль вышел из строя или выполнен некачественно.

Незнание основных принципов работы, неверный монтаж элементов и неумение обращаться с приборами зачастую приводят к тому, что все хорошее считается бесполезным или никому не нужным. Так случилось и с системой оперативного дистанционного контроля тепловых сетей: идея была отличная, а вот реализация как всегда подкачала. Безразличие заказчика с одной стороны и «ответственная» работа строителей с другой привели к тому, что в нашей стране СОДК работает правильно в лучшем случае в 50% построенных трубопроводов, а пользуются ей и вовсе в 20% организаций. Взяв для примера Европу, даже не далекую, допустим Польшу, можно увидеть, что неверная работа системы дистанционного контроля приравнивается к аварии на трубопроводе с безотлагательными ремонтными работами. В нашей же стране гораздо чаще можно увидеть раскопанную посреди зимы улицу в поисках места порыва теплопровода, чем летние профилактические работы бригады электриков. Для того чтобы внести ясность, рассмотрим СОДК в теплосетях с самого начала.

Назначение

Трубопроводы тепловых сетей из поколения в поколение остаются стальными, и основной причиной их разрушения является коррозия. Происходит она из-за контакта с влагой, причем в большей степени подвержена ржавчине наружная стенка металлической трубы. Основной функцией СОДК является контроль сухости изоляции трубопровода. Причем указывается без различия причины как попадание влаги извне из-за дефекта пластиковой трубы-оболочки, так и попадание на изоляцию теплоносителя в результате дефекта стального теплопровода.

При помощи специального инструмента и СОДК можно определить:

  • намокание изоляции;
  • расстояние до промокшей изоляции;
  • непосредственный контакт провода СОДК и металлической трубы;
  • обрыв проводов СОДК;
  • нарушение изоляционного слоя соединительного кабеля.

Принцип работы

В основу работы системы положено свойство воды увеличивать проводимость электрического тока. Используемый в качестве изоляции в ПИ-трубах пенополиуретан в сухом состоянии имеет огромное сопротивление, которое электрики характеризуют как бесконечно большое. При попадании влаги в пену проводимость мгновенно улучшается, и приборы, подключенные к системе, фиксируют снижение сопротивления изоляции.

Области применения

Применять трубопроводы, оснащенные системой оперативного дистанционного контроля, имеет смысл при любой подземной прокладке. Довольно часто, даже зная, что трубопровод имеет дефект и идут значительные потери теплоносителя, определить место порыва визуально практически невозможно. Именно из-за этого в зимний период приходится либо раскапывать всю улицу в поисках течи, либо ждать пока вода сама промоет себе путь наружу. Второй вариант довольно часто заканчивается в сводках новостей заметками о том, что в городе N из-за аварии на тепловых сетях и обвала поверхности земли провалились автомобили, люди или еще что-либо, что имело несчастье находиться рядом.

Не добавляет информативности и нахождение трубопровода в канале. Из-за пара определить точку утечки возможно далеко не всегда и земляные работы все равно будут значительными и долгими. Исключение, пожалуй, составляют лишь большие проходные туннели с коммуникациями, но строят их редко и стоят очень дорого.

Вариант воздушной прокладки трубопроводов, вот то место, где система ОДК не имеет никакого практического смысла. Все течи видно невооруженным глазом и растраты на дополнительный контроль ни к чему.

Строение и структура

ПИ-трубы, используемые в тепловых сетях, состоят из стальной трубы, трубы-оболочки из полиэтилена и вспененного полиуретана в качестве изоляции. В этой пене располагаются 3 медных проводника сечением 1,5 мм 2 с удельным сопротивлением от 0,012 до 0,015 Ом/м. Собирают в цепь провода, расположенные в верхней части, в положении «без 10 мин 2 ч», третий остается незадействованным. Сигнальным или основным считается проводник, расположенный справа по ходу движения теплоносителя. Он заходит во все ответвления и именно по нему определяется состояние труб. Левый проводник — транзитный, его основная функция — создание петли.

Для удлинения кабельных выводов и соединения трубопроводов с точками коммутации используют соединительные кабели. Обычно 3-х или 5-ти жильные с тем же сечением в 1,5 мм.

Сами коммутационные терминалы располагаются в ящиках ковера, устанавливаемых на улице либо в помещениях насосных и тепловых пунктов.

Измерения проводят при помощи специализированных приборов. Обычно это переносной импульсный рефлектометр отечественного производства. Для стационарной установки есть также определенные устройства, однако они являются малоинформативными и в большинстве случаев не используются.

Монтаж

Сборка всех элементов системы происходит после сварки трубопровода. И если большинство работ по строительству теплотрассы выполняется исключительно специалистами и с использованием техники, то при небольших познаниях в области электрики и наличии паяльника, газовой горелки и мегомметра работы по монтажу дистанционного контроля можно сделать и самому. Для верного выполнения следует придерживаться следующей последовательности:

  • проверить целостность проводников в изоляции трубы при помощи прозванивания;
  • удалить пену на глубину 2-3 см вне зависимости от степени ее намокания;

  • аккуратно раскрутить и выпрямить свернутые для транспортировки проводники;
  • установить пластиковые подставки на трубу, закрепить их скотчем;
  • зачистить проводники наждачной бумагой и обезжирить;
  • натянуть проводники в разумных пределах (чрезмерное натяжение может послужить причиной разрыва провода из-за температурного расширения трубы, недостаточное к провисанию проводника и контакту с трубой);
  • соединение и припайка проводников друг к другу (не перепутать сигнальный и транзитный провода между собой);

  • вжать провода в специальные прорези в пластиковых подставках;
  • оценить прочность соединения руками;
  • обезжирить растворителем и высушить при помощи газовой горелки концы труб-оболочек для последующего монтажа муфты;
  • прогрев подготовленных концов до температуры в 60 градусов и установка клея;
  • надвинуть муфту на соединение, предварительно удалив белую защитную пленку, произвести усадку при помощи пламени горелки;
  • просверлить 2 отверстия в муфте для оценки герметичности и последующего запенивания;
  • произвести оценку герметичности: в одно отверстие устанавливается манометр, через другое подается воздух, по удержанию давления происходит оценка качества соединения;

  • отрезать термоусаживаемую ленту;
  • подогреть место на стыке муфта/труба-оболочка и прикрепить один конец ленты;
  • симметрично уложить ленту поверх стыка и закрепить внахлест;
  • подогреть замковую пластину и закрыть ей стык ленты;
  • усадить ленту пламенем горелки;
  • провести повторную опрессовку воздухом как описано выше;
  • смешать пенообразующие компоненты А и Б и залить через отверстие в полость под установленной муфтой;
  • при продвижении пены к отверстию установить дренажную пробку для удаления воздуха;
  • после окончания пенообразования зачистить поверхность муфты от пены и установить вварную пробку;
  • после сбора системы в трубной части нарастить проводники в местах вывода;
  • установить ящики ковера;
  • проложить наращенные проводники в оцинкованных трубах от места вывода на трубе до установленного ящика ковера;
  • установить и подключить коммутационные терминалы в соответствии с проектом;

  • подключить стационарные детекторы;
  • выполнить полную проверку при помощи рефлектометра.

В описании рассмотрен вариант с использованием термоусаживаемых муфт, есть и другая разновидность изоляции стыков — электросварные муфты. В этом случае процесс будет немного сложнее из-за использования электрических нагревательных элементов, но суть останется той же.

При выполнении работ по монтажу системы ОДК есть и наиболее распространенные ошибки. Они редко зависят от того, кто выполнял работу — сам заказчик или строитель. Самая главная из них — это неплотная установка муфт. При отсутствии герметичности уже после первого дождя система может показать намокание. Второй ошибкой является невыбранная пена на стыках: даже выглядевшая визуально абсолютно сухой, она часто несет в себе избыток влаги и влияет на корректную работу системы. После обнаружения того или иного дефекта следует понаблюдать за динамикой и принять решение о том, когда производить ремонт: немедленно или в летний межотопительный период.

Способы ремонта

Ремонт системы ОДК иногда требуется уже на стадии строительства. Рассмотрим несколько частых случаев.

  1. Сигнальный провод сломан на выходе из изоляции.

Следует удалить пену до образования необходимого количества проводника и нарастить длину при помощи припаивания дополнительного провода (можно использовать остатки с других стыков). При проведении спайки следует быть внимательным и не допускать воспламенения изоляции трубопровода.

  1. Провод системы ОДК контактирует с трубой.

Если добраться до места контакта без нарушения целостности оболочки невозможно, следует использовать для соединения в цепь 3-й незадействованный провод вместо дефектного проводника. Если все проводники в результате заводского брака являются непригодными, следует поставить в известность поставщика. В зависимости от его возможностей и вашего желания будет проведена замена трубы либо ремонт с уменьшением стоимости прямо на месте. Если по какой либо причине связь с поставщиком невозможна, самостоятельный ремонт проводят следующим образом:

  • определение места контакта;
  • разрез трубы-оболочки;
  • выборка пены;
  • устранение контакта, при необходимости спайка проводника;
  • восстановление слоя изоляции;
  • восстановление целостности трубы-оболочки при помощи ремонтной муфты или экструдера.

Во время эксплуатации тепловых сетей ремонт связан не столько с восстановлением функционала, сколько с сушкой пены. Причины могут быть самые разные: строительные ошибки при герметизации муфт, разрыв теплопровода, неаккуратные земляные работы вблизи труб и многое другое. При попадании влаги оптимальным вариантом является ее удаление до нормальных показателей сопротивления. Достигается это различными способами: от просушки при раскрытой оболочке до замены изоляционного слоя. Контролируется степень сухости импульсным рефлектометром. После достижения необходимых показателей восстановление целостности оболочки проводится так же, как описано выше.

Заключение

Напоследок хотелось бы выразить надежду, что после прочтения статьи задумаются о необходимости применения системы контроля не только частники, строящие сети к своему производственному зданию или офису, но и службы, вплотную занимающиеся эксплуатацией трубопроводов. Возможно, тогда станет намного меньше несчастных случаев и финансовых потерь при централизованном теплоснабжении городов.

Ольга Устимкина, рмнт.ру



Понравилась статья? Поделитесь ей