Контакты

Шкалы температур. Абсолютная шкала температур

История изобретения термометра благодаря переводам наследия древних ученых сохранилась хорошо.

Так описано, что греческий ученый и врач Гален, сделал первую попытку измерения температуры в 170 году н.э. Он документально описал стандартную температуру кипящей воды и льда.

Измерители нагретости

Концепция измерения температуры является достаточно новой. Термоскоп — по существу, измеритель нагретости без шкалы был предшественником современного термометра. Были несколько изобретателей, работающих на термоскопе в 1593 году, но наиболее известным является Галилео Галилей, итальянский изобретатель, который также улучшил (но не изобрел) термоскоп.

Термоскоп может показать различия в нагретости, что позволяет наблюдателям знать, если что-то становилось теплее или холоднее. Тем не менее, термоскоп не может обеспечить точную температуру в градусах. В 1612 году итальянский изобретатель Санторио добавил свою числовую шкалу на термоскоп и она была использована, чтобы измерять температуру человека. Но по-прежнему не хватало стандартизированной шкалы и точности.

Изобретение термометра принадлежит немецкому физику Габриелю Фаренгейту который совместно с датским астрономом Олаф Кристенсен Рёмером разработал измеритель на основе и с использованием спирта.

В 1724 году они ввели шкалу стандартной температуры, которая носит его имя Фаренгейта, масштаба который был использован для записи изменений нагретости в точной форме. Его шкала разделена на 180 градусов между точками замерзания и кипения воды. 32° F замерзания воды и 212 ° F кипения воды, 0° F была основана на нагретости равной смеси воды, льда и соли. Также за основу этой знаковой системы взята температура человеческого тела. Первоначально, нормальная нагретость человеческого тело была 100° F, но с тех пор была скорректирована до 98,6 ° F. Равная смесь воды, льда и хлорида аммония использована для установки в 0° F.

Фаренгейт демонстрировал термометр на спиртовой основе в 1709 году до открытия ртутного аналога, который оказался более точным.

В 1714 Фаренгейт разработал первый современный термометр — ртутный термометр с более точными измерениями. Известно, что ртуть расширяется или сжимается при повышении физической величины нагретости или падает. Это можно считать первым современным ртутным термометром со стандартизированной шкалой.

История изобретения термометра отмечает, что Габриель Фаренгейт немецкий физик изобрел спиртовой термометр в 1709 году и ртутный термометр в 1714 году.

Виды температурных шкал

В современном мире находят применение определенные виды температурных шкал :

1. Шкала Фаренгейта является одной из трех основных температурных знаковых систем, используемых сегодня с двумя другими Цельсия и Кельвина. Фаренгейт это стандарт, используемый для измерения температуры в Соединенных Штатах, но большая часть остального мира использует Цельсия.

2. Вскоре после открытия Фаренгейта шведский астроном Андерс Цельсий озвучил свою шкалу, которая упоминается как Цельсия. Она делится на 100 градусов, отделяющих точку кипения и замерзания. Оригинальный масштаб установленный Цельсием 0 в качестве точки кипения воды и 100 в качестве точки замерзания, был изменен вскоре после изобретения шкалы и стал: 0° C – замерзания, 100° C – точка кипения.

Термин Цельсия был принят в 1948 году международной конференцией по вопросам мер и весов и масштаб является предпочтительным как датчик температуры для научных приложений, а также в большинстве стран мира кроме Соединенных Штатов.

3. Следующую шкалу изобрел Лорд Кельвин из Шотландии с его датчиком в 1848 году, известная сейчас как шкала Кельвина. Она основывался на идее абсолютной теоретической нагретости, при которой все вещества не имеют тепловой энергии. Там нет отрицательных чисел по шкале Кельвина, 0 K самая низкая температура возможная в природе.

Абсолютный ноль по Кельвину означает минус 273,15 ° С и минус 459,67 F. Шкала Кельвина широко используется в научных приложениях. Единицы по шкале Кельвина имеют тот же размер, как и у шкалы Цельсия, за исключением того, что шкала Кельвина устанавливает самую .

Коэффициенты пересчета видов температур

Фаренгейта в градусы Цельсия: вычтите 32, а затем умножить на 5, а затем разделить на 9;

Цельсия в градусы Фаренгейта: умножьте на 9, делим на 5, затем добавить 32;

Фаренгейта в Кельвина: вычтите 32, умножить на 5, разделить на 9, а затем добавить 273,15;

Кельвина в градусы Фаренгейта: вычтите 273,15, умножить на 1,8, а затем добавить 32;

Кельвина в градусы Цельсия: добавить 273;

Цельсия в Кельвина: вычтите 273.

Термометры используют материалы, которые изменяются в некотором роде, когда они нагреваются или охлаждаются. Самыми распространенные ртутные или спиртовые, где жидкость расширяется, когда нагревается и сжимается при охлаждении, поэтому длина столба жидкости длиннее или короче в зависимости от нагретости. Современные термометры калиброванные по виду температур как по Фаренгейту (используются в США), по Цельсию (во всем мире) и Кельвина (используется в основном учеными).

Температурные шкалы

системы сопоставимых числовых значений температуры (См. Температура). температура не является непосредственно измеряемой величиной; её значение определяют по температурному изменению какого-либо удобного для измерения физического свойства термометрического вещества (см. Термометрия). Выбрав термометрическое вещество и свойство, необходимо задать начальную точку отсчёта и размер единицы температуры - градуса. Таким образом определяют эмпирические Т. ш. В Т. ш. обычно фиксируют две основные температуры, соответствующие точкам фазовых равновесий однокомпонентных систем (так называемые реперные или постоянные точки), расстояние между которыми называется основным температурным интервалом шкалы. В качестве реперных точек используют: тройную точку воды, точки кипения воды, водорода и кислорода, точки затвердевания серебра, золота и др. Размер единичного интервала (единицы температуры) устанавливают как определённую долю основного интервала. За начало отсчёта Т. ш. принимают одну из реперных точек. Так можно определить эмпирическую (условную) Т. ш. по любому термометрическому свойству х. Если принять, что связь между х и температурой t линейна, то температура t x = n (x t - х 0) / (x n - x 0), где x t , x 0 и x n - числовые значения свойства х при температуре t в начальной и конечной точках основного интервала, (x n - x 0) / n - размер градуса, п - число делений основного интервала.

В Цельсия шкале (См. Цельсия шкала), например, за начало отсчёта принята температура затвердевания воды (таяния льда), основной интервал между точками затвердевания и кипения воды разделён на 100 равных частей (n = 100).

Т. ш. представляет собой, таким образом, систему последовательных значений температуры, связанных линейно со значениями измеряемой физической величины (эта величина должна быть однозначной и монотонной функцией температуры). В общем случае Т. ш. могут различаться по термометричкому свойству (им может быть тепловое расширение тел, изменение электрического сопротивления проводников с температурой и т. п.), по термометрическому веществу (газ, жидкость, твёрдое тело), а также зависеть от реперных точек. В простейшем случае Т. ш. различаются числовыми значениями, принятыми для одинаковых реперных точек. Так, в шкалах Цельсия (°С), Реомюра (°R) и Фаренгейта (°F) точкам таяния льда и кипения воды при нормальном давлении приписаны разные значения температуры. Соотношение для пересчёта температуры из одной шкалы в другую:

n °C = 0,8n °R = (1,8n +32) °F.

Непосредственный пересчёт для Т. ш., различающихся основными температурами, без дополнительных экспериментальных данных невозможен. Т. ш., различающиеся по термометрическому свойству или веществу, существенно различны. Возможно неограниченное число не совпадающих друг с другом эмпирических Т. ш., так как все термометрические свойства связаны с температурой нелинейно и степень нелинейности различна для разных свойств и вещественную температуру, измеренную по эмпирической Т. ш., называют условной («ртутная», «платиновая» температура и т. д.), её единицу - условным градусом. Среди эмпирических Т. ш. особое место занимают газовые шкалы, в которых термометрическим веществом служат газы («азотная», «водородная», «гелиевая» Т. ш.). Эти Т. ш. меньше других зависят от применяемого газа и могут быть (введением поправок) приведены к теоретической газовой Т. ш. Авогадро, справедливой для идеального газа (см. Газовый термометр). Абсолютной эмпирической Т. ш. называют шкалу, абсолютный нуль которой соответствует температуре, при которой численное значение физического свойства х = 0 (например, в газовой Т. ш. Авогадро абсолютный нуль температуры соответствует нулевому давлению идеального газа). температуры t (x ) (по эмпирической Т. ш.) и Т (Х ) (по абсолютной эмпирической Т. ш.) связаны соотношением T (X ) =t (x ) +T 0 (x ) , где T 0 (x - абсолютный нуль эмпирической Т. ш. (введение абсолютного нуля является экстраполяцией и не предполагает его реализации).

Принципиальный недостаток эмпирической Т. ш. - их зависимость от термометрического вещества - отсутствует у термодинамической Т. ш., основанной на втором начале термодинамики (См. Второе начало термодинамики). При определении абсолютной термодинамической Т. ш. (шкала Кельвина) исходят из Карно цикл а. Если в цикле Карно тело, совершающее цикл, поглощает теплоту Q 1 при температуре T 1 и отдаёт теплоту Q 2 при температуре Т 2 , то отношение T 1 / T 2 = Q 1 / Q 2 не зависит от свойств рабочего тела и позволяет по доступным для измерений величинам Q 1 и Q 2 определять абсолютную температуру. Вначале основной интервал этой шкалы был задан точками таяния льда и кипения воды при атмосферном давлении, единица абсолютной температуры соответствовала Генеральные конференции по мерам и весам) установила термодинамическую Т. ш. с одной реперной точкой - тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °С. температура Т в абсолютной термодинамической Т. ш. измеряется в Кельвин ах (К). Термодинамическая Т. ш., в которой для точки таяния льда принята температура t = 0 °С, называется стоградусной. Соотношения между температурами, выраженными в шкале Цельсия и абсолютной термодинамической Т. ш.:

TK = t °C + 273,15K, n K = n °C,

так что размер единиц в этих шкалах одинаков. В США и некоторых др. странах, где принято измерять температуру по шкале Фаренгейта, применяют также абсолютную Т. ш. Ранкина. Соотношение между кельвином и градусом Ранкина: n K = 1,8n °Ra, по шкале Ранкина точка таяния льда соответствует 491,67 °Ra, точка кипения воды 671,67 °Ra.

Любая эмпирическая Т. ш. приводится к термодинамической Т. ш. введением поправок, учитывающих характер связи термометрического свойства с термодинамической температурой. Термодинамическая Т. ш. осуществляется не непосредственно (проведением цикла Карно с термометрическим веществом), а с помощью других процессов, связанных с термодинамической температурой. В широком интервале температур (примерно от точки кипения гелия до точки затвердевания золота) термодинамические Т. ш. совпадают с Т. ш. Авогадро, так что термодинамическую температуру определяют по газовой, которую измеряют газовым термометром. При более низких температурах термодинамическая Т. ш. осуществляется по температурной зависимости магнитной восприимчивости парамагнетиков (см. Низкие температуры), при более высоких - по измерениям интенсивности излучения абсолютно чёрного тела (см. Пирометрия). Осуществить термодинамическую Т. ш. даже с помощью Т. ш. Авогадро очень сложно, поэтому в 1927 была принята Международная практическая температурная шкала (МПТШ), которая совпадает с термодинамической Т. ш. с той степенью точности, которая экспериментально достижима. Все приборы для измерения температуры градуированы в МПТШ.

Лит.: Попов М. М., Термометрия и калориметрия, 2 изд., М., 1954; Гордов А. Н., Температурные шкалы, М., 1966; Бурдун Г. Д., Справочник по Международной системе единиц, М., 1971; ГОСТ 8.157-75. Шкалы температурные практические.

Д. И. Шаревская.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

  • Температурные напряжения
  • Температурный напор

Смотреть что такое "Температурные шкалы" в других словарях:

    ТЕМПЕРАТУРНЫЕ ШКАЛЫ - системы сопоставимых числовых значений температуры. Существуют абсолютные термодинамические температурные шкалы (шкала Кельвина) и различные эмпирические температурные шкалы, реализуемые при помощи свойств веществ, зависящих от температуры… … Большой Энциклопедический словарь

    ТЕМПЕРАТУРНЫЕ ШКАЛЫ - ТЕМПЕРАТУРНЫЕ ШКАЛЫ, системы сопоставимых числовых значений температуры. Существуют абсолютные термодинамические температурные шкалы, в основе которых лежит какое либо свойство вещества, зависящее от температуры (тепловое расширение,… … Современная энциклопедия

    ТЕМПЕРАТУРНЫЕ ШКАЛЫ - системы сопоставимых значений темп ры. Темп ру невозможно измерить непосредственно; её значение определяют по температурному изменению к. л. удобного для измерений физ. св ва в ва (см. ТЕРМОМЕТРИЯ). Термометрич. св вом х могут быть давление газа … Физическая энциклопедия - системы сопоставимых числовых значений температуры. Для построения Т. ш. необходимо выбрать начало отсчета температуры и размер единицы температуры (градуса). Существует абсолютная термодинамическая Т. ш. (шкала Кельвина) и различные эмпирические … Астрономический словарь

    ТЕМПЕРАТУРНЫЕ ШКАЛЫ - системы сопоставимых числовых значений темп ры. Существуют абс. термодинамич. Т. ш. (шкала Кельвина) и разл. эмпирич. Т. ш., реализуемые при помощи свойств в в, зависящих от темп ры (тепловое расширение, изменение электрич. сопротивления с темп… … Естествознание. Энциклопедический словарь

    Температурные шкалы - по следовательности значений, отражающие упорядоченную совокупность различных по значению температур. По системе СИ термодинамическая (основная) температурная шкала не зависит от рода термометрических веществ и имеет одну реперную точку тройную… … Энциклопедический словарь по металлургии

    ТЕМПЕРАТУРНЫЕ ШКАЛЫ - последовательности значений, отражающие упорядоченную совокупность различных по значению температур. По системе СИ термодинамическая (основная) температурная шкала не зависит от рода термометрического вещества и имеет одну реперную точку тройную… … Металлургический словарь

    Градус Цельсия - (обозначение: °C) широко распространённая единица измерения температуры, применяется в Международной системе единиц (СИ) наряду с кельвином … Википедия

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http : www . allbest . ru /

Температурные шкалы

Измерять температуру человечество научилось примерно 400 лет назад. Но первые приборы, напоминающие нынешние термометры, появились только в ХVIII веке. Изобретателем первого градусника стал ученый Габриэль Фаренгейт. Всего в мире было изобретено несколько разных температурных шкал, одни из них были более популярны и используются до сих пор, другие постепенно вышли из употребления.

Температурные шкалы - это системы температурных значений, которые возможно сопоставить между собой. Так как температура не относится к величинам, подлежащим непосредственному измерению, то значение ее связывают с изменением температурного состояния какого-либо вещества (например, воды). На всех температурных шкалах, как правило, фиксируют две точки, соответствующие температурам перехода выбранного термометрического вещества в разные фазы. Это так называемые реперные точки. Примерами реперных точек может служить точка закипания воды, точка твердения золота и т. п. Одну из точек принимают за начало отсчета. Интервал между ними делят на определенное количество равных отрезков, являющихся единичными. За единицу измерения температуры повсеместно принят один градус. температура шкала прибор

Наиболее популярные и получившие самое широкое распространение в мире шкалы температур - шкала Цельсия и Фаренгейта.

Рассмотрим по порядку имеющиеся шкалы и попробуем сравнить их с точки зрения удобства использования и практической пользы. Наиболее известных шкал пять:

1. Шкала Фаренгейта была изобретена Фаренгейтом, немецким ученым. В один из холодных зимних дней 1709 года ртуть в термометре ученого опустилась до очень низкой температуры, которую он предложил принять за нуль по новой шкале. Другой реперной точкой стала температура человеческого тела. Температурой замерзания воды по его шкале стали +32°, а температурой кипения +212°. Шкала Фаренгейта не является особенно продуманной и удобной. Ранее она широко применялась в англоязычных странах, в настоящее время - практически только в США.

2. По шкале Реомюра , изобретенной французским ученым Рене де Реомюром в 1731 году, нижней реперной точкой служит точка замерзания воды. Шкала основана на использовании спирта, который расширяется при нагревании, за градус была принята тысячная часть объема спирта в резервуаре и трубке при нуле. Сейчас эта шкала вышла из употребления.

3. По шкале Цельсия (предложена шведом Андерсом Цельсием в 1742 году) за нуль принята температура смеси льда и воды (температура, при которой тает лед), другая основная точка - температура, при которой вода закипает. Интервал между ними решено было поделить на 100 частей, и одна часть принята за единицу измерения - градус Цельсия. Эта шкала более рациональна, чем шкала Фаренгейта и шкала Реомюра, и сейчас используется повсеместно.

4. Шкала Кельвина изобретена в 1848 году лордом Кельвином (английский ученый У. Томсон). На ней нулевая точка соответствовала самой низкой возможной температуре, при которой прекращается движение молекул вещества. Это значение было теоретически вычислено при изучении свойств газов. По шкале Цельсия это значение соответствует приблизительно - 273°С, т.е. нуль по Цельсию равняется 273 К. Единицей измерения новой шкалы стал один кельвин (первоначально именовался «градус Кельвина»).

5. Шкала Ранкина (по фамилии шотландского физика У. Ранкина) имеет тот же принцип, что у шкалы Кельвина, а размерность ту же, что шкала Фаренгейта. Эта система практически не получила распространения.

Значения температур, которые дает нам шкала Фаренгейта и Цельсия, могут быть легко переведены друг в друга. При переводе «в уме» значений по Фаренгейту в градусы Цельсия нужно исходную цифру уменьшить на 32 единицы и умножить на 5/9. Наоборот (из шкалы Цельсия в Фаренгейта) - умножить исходное значение на 9/5 и добавить 32. Для сравнения: температура абсолютного нуля по Цельсию - 273,15 °, по Фаренгейту- 459,67°.

И змерение температуры

Измерение температуры основано на зависимости какой-либо физической величины (например, объема) от температуры. Эта зависимость и используется в температурной шкале термометра -- прибора, служащего для измерения температуры.

В 1597 году Галилео Галилей создал термоскоп. Термоскоп представлял собой небольшой стеклянный шарик с припаянной стеклянной трубкой, опущенной в воду. Когда шарик охлаждался, вода в трубке под поднималась. При потеплении уровень воды в трубки опускался вниз. Недостатком прибора было отсутствие шкалы и зависимость показаний от атмосферного давления.

Позднее флорентийские ученые усовершенствовали термоскоп Галилея, добавив к нему шкалу из бусин и откачав из шарика воздух. В 1700 году воздушный термоскоп был преобразован ученым Торричелли. Прибор был перевернут шариком вниз, сосуд с водой удалили, а в трубку налили спирт. Действие прибора основывалось на расширении спирта при нагревании - теперь показания не зависели от атмосферного давления. Это был один из первых жидкостных термометров. Термометр Торричелли был без шкалы.

В 1714 году голландский ученый Фаренгейт сделал ртутный термометр. Он поместил термометр в смесь льда и поваренной соли и обозначил высоту столбика ртути за 0 градусов. Следующей точкой у Фаренгейта была температура человеческого тела - 96 градусов. Сам изобретатель определял вторую точку как «температуру под мышкой здорового англичанина»

В 1730 году французский физик Р. Реомюр предложил спиртовой термометр с постоянными точками таяния льда (0 °R) и кипения воды (80 °R). Примерно в это же время шведский астроном Андерс Цельсий использовал ртутный термометр Фаренгейта с собственной шкалой, где температура кипения воды была принята за 0 градусов, а таяния льда - за 100 градусов.

Температура является важным параметром, определяющим не только протекание технологического процесса, но и свойства вещества. Для измерения температуры в системе единиц СИ принята температурная шкала с единицей температуры Кельвин (К). Начальной точкой этой шкалы является абсолютный нуль (0 К). Для технологических измерений часто применяют температурную шкалу с единицей температуры градус Цельсия (°С)

Для измерения температуры используют различные первичные преобразователи, отличающиеся способом преобразования температуры в промежуточный сигнал. В промышленности наибольшее применение получили следующие первичные преобразователи: термометры расширения, манометрические термометры, термометры сопротивления, термопары (термоэлектрические пирометры) и пирометры излучения. Все они, за исключением пирометров излучения, в процессе эксплуатации находятся в контакте с измеряемой средой.

Размещено на Allbest.ru

...

Подобные документы

    Температура - параметр, характеризующий тепловое состояние вещества. Температурные шкалы, приборы для измерения температуры и их основные виды. Термодинамический цикл поршневого двигателя внутреннего сгорания с подводом тепла при постоянном давления.

    контрольная работа , добавлен 25.03.2012

    Основные шкалы измерения температуры. Максимальное и минимальное значение в условиях Земли. Температура среды обитания человека. Температурный фактор на территории Земли. Распределение температуры в различных областях тела в условиях холода и тепла.

    доклад , добавлен 18.03.2014

    Средства измерения температуры. Характеристики термоэлектрических преобразователей. Принцип работы пирометров спектрального отношения. Приборы измерения избыточного и абсолютного давления. Виды жидкостных, деформационных и электрических манометров.

    учебное пособие , добавлен 18.05.2014

    Состояние системы мер и измерительной техники в различные исторические периоды. Измерение температуры, давления и расхода жидкости с применением различных методов и средств. Приборы для измерения состава, относительной влажности и свойств вещества.

    курсовая работа , добавлен 11.01.2011

    Понятие термоэлектрического эффекта; технические термопары, их типы. Характеристика и конструкция ТЭП, исполнение, назначение, условия эксплуатации, недостатки. Измерение температуры, пределы допускаемых отклонений термоЭДС от номинального значения.

    контрольная работа , добавлен 30.01.2013

    Характеристика величины, характеризующей тепловое состояние тела или меры его "нагретости". Причина Броуновского движения. Прародитель современных термометров, их виды. Единицы измерения температуры, типы шкал. Эксперимент по изготовлению термоскопа.

    презентация , добавлен 14.01.2014

    Теория температурных полей: пространственно-временные распределения температуры и концентрации растворов. Модель физико-химического процесса взаимодействия соляной кислоты и карбонатной составляющей скелета. Методы расчётов полей температуры и плотности.

    Определение линейного теплового потока методом последовательных приближений. Определение температуры стенки со стороны воды и температуры между слоями. График изменения температуры при теплопередаче. Число Рейнольдса и Нусельта для газов и воды.

    контрольная работа , добавлен 18.03.2013

    Разработка и совершенствование технологий измерения температуры с использованием люминесцентных, контактных и бесконтактных методов. Международная температурная шкала. Создание спиртовых, ртутных, манометрических и термоэлектрических термометров.

    курсовая работа , добавлен 07.06.2014

    Основные сведения о температуре и температурных шкалах, возможность проводить измерение. Использование на практике термометров и требования к средствам измерений, входящих в состав государственных эталонов соответствующих диапазонов температуры.

История

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества - теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково - градусами.

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах - градусах.

Шкала Кельвина

В термодинамике используется шкала Кельвина, в которой температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.16 расстояния от абсолютного нуля до тройной точки воды (состояния, при котором лёд, вода и водяной пар находятся в равновесии). Для пересчета кельвинов в энергетические единицы служит постоянная Больцмана. Используются также производные единицы: килокельвин, мегакельвин, милликельвин и т.д.

Шкала Цельсия

В быту используется шкала Цельсия, в которой за 0 принимают точку замерзания воды, а за 100° точку кипения воды при атмосферном давлении. Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15 °C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия - особая точка для метеорологии , поскольку замерзание атмосферной воды существенно всё меняет.

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. В этой шкале на 100 градусов раздёлен интервал от температуры самой холодной зимы в городе, где жил Фаренгейт, до температуры человеческого тела. Ноль градусов Цельсия - это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), то есть изменение температуры на 1 °F соответствует изменению на 5/9 °С. Предложена Г. Фаренгейтом в 1724.

Шкала Реомюра

Предложенна в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица - градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками - температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25 °C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Пересчёт температуры между основными шкалами

Кельвин

Цельсий

Фаренгейт

Кельвин (K)

С + 273,15

= (F + 459,67) / 1,8

Цельсий (°C)

K − 273,15

= (F − 32) / 1,8

Фаренгейт (°F)

K · 1,8 − 459,67

C · 1,8 + 32

Сравнение температурных шкал

Описание

Кельвин Цельсий

Фаренгейт

Ньютон Реомюр

Абсолютный ноль

−273.15

−459.67

−90.14

−218.52

Температура таяния смеси Фаренгейта (соли и льда в равных количествах)

255.37

−17.78

−5.87

−14.22

Температура замерзания воды (нормальные условия)

273.15

Средняя температура человеческого тела ¹

310.0

36.8

98.2

12.21

29.6

Температура кипения воды (нормальные условия)

373.15

Температура поверхности Солнца

5800

5526

9980

1823

4421

¹ Нормальная температура человеческого тела - 36.6 °C ±0.7 °C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Поскольку это значение не входит в диапазон нормальной температуры по современным представлениям, можно говорить, что оно содержит избыточную (неверную) точность. Некоторые значения в этой таблице были округлены.

Сопоставление шкал Фаренгейта и Цельсия

( o F - шкала Фаренгейта, o C - шкала Цельсия)

o F

o C

o F

o C

o F

o C

o F

o C

459.67
-450
-400
-350
-300
-250
-200
-190
-180
-170
-160
-150
-140
-130
-120
-110
-100
-95
-90
-85
-80
-75
-70
-65

273.15
-267.8
-240.0
-212.2
-184.4
-156.7
-128.9
-123.3
-117.8
-112.2
-106.7
-101.1
-95.6
-90.0
-84.4
-78.9
-73.3
-70.6
-67.8
-65.0
-62.2
-59.4
-56.7
-53.9

60
-55
-50
-45
-40
-35
-30
-25
-20
-19
-18
-17
-16
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5

51.1
-48.3
-45.6
-42.8
-40.0
-37.2
-34.4
-31.7
-28.9
-28.3
-27.8
-27.2
-26.7
-26.1
-25.6
-25.0
-24.4
-23.9
-23.3
-22.8
-22.2
-21.7
-21.1
-20.6

4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20.0
-19.4
-18.9
-18.3
-17.8
-17.2
-16.7
-16.1
-15.6
-15.0
-14.4
-13.9
-13.3
-12.8
-12.2
-11.7
-11.1
-10.6
-10.0
-9.4
-8.9
-8.3
-7.8
-7.2

20
21
22
23
24
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
125
150
200

6.7
-6.1
-5.6
-5.0
-4.4
-3.9
-1.1
1.7
4.4
7.2
10.0
12.8
15.6
18.3
21.1
23.9
26.7
29.4
32.2
35.0
37.8
51.7
65.6
93.3

Для перевода градусов цельсия в кельвины необходимо пользоваться формулой T=t+T 0 где T- температура в кельвинах, t- температура в градусах цельсия, T 0 =273.15 кельвина. По размеру градус Цельсия равен Кельвину.

Измерение теплоэнергетических величин

Одной из важнейших теплоэнергетических величин является температура. Температура – физическая величина, характеризующая степень нагретости тела или его теплоэнергетический потенциал. Практически все технологические процессы и различные свойства вещества зависят от температуры.

В отличие от таких физических величин, как масса, длина и т.п., температура является не экстенсивной (параметрической), а интенсивной (активной) величиной. Если гомогенное тело разделить пополам, то его масса также делится пополам. Температура, являясь интенсивной величиной, таким свойством аддитивности не обладает, т.е. для системы, находящейся в термическом равновесии, любая часть системы имеет одинаковую температуру. Поэтому не представляется возможным создание эталона температуры, подобно тому, как создаются эталоны экстенсивных величин.

Измерить температуру можно только косвенным путем, основываясь на зависимости от температуры таких физических свойств тел, которые поддаются непосредственному измерению. Эти свойства тел называют термометрическими. К ним относятся длина, плотность, объем, термоэ.д.с., электросопротивление и т.д. Вещества, характеризующиеся термометрическими свойствами, называю термометрическими. Средство измерения температуры называют термометром. Для создания термометра необходимо иметь температурную шкалу.

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В этой связи представляется возможным построение температурных шкал на основе выбора любого термометрического свойства. В тоже время нет ни обного термометрического свойства, которое линейно связано с изменением температуры и не зависит от других факторов в широком интервале измерения температур.

Первые температурные шкалы появились в XVIII веке. Для построения их выбирались две опорные (реперные) точки t 1 и t 2 , представляющие собой температуры фазового равновесия чистых веществ. Разность температур t 2 - t 1 называют основным температурным интервалом. Немецкий физик Габриель Даниель Фаренгейт (1715 г.), шведский физик Андерс Цельсий (1742 г.) и французский физик Рене Антуан Реомюр (1776 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовали расширение объема жидкости V , т.е.

t = a + bV , (1)

где а и b – постоянные коэффициенты.

Подставив в это уравнение V = V 1 при t = t 1 и V = V 2 при t = t 2 , после преобразования получим уравнение температурной шкалы:


В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t 1 соответствовали +32 0 , 0 0 и0 0 , а точке кипения воды t 2 – 212 0 , 80 0 и 100 0 . Основной интервал t 2 – t 1 в этих шкалах делится соответственно на N = 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта – t 0 F, градусом Реомюра t 0 R и градусом Цельсия t 0 C. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а представляет собой единичный промежуток – масштаб шкалы.

Для пересчета температуры из одной шкалы в другую используют соотношение:

(3)

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (ртуть, спирт и др.), использующих одно и тоже термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Это обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для разных термометрических веществ. В частности, нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для разных капельных жидкостей.

На основе описанного принципа можно построить любое количество шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал - условными градусами.

Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной .

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия h тепловой машины, работающей по обратному циклу Карно, определяется только температурой нагревателя Т н и холодильника Т х и не зависит от свойств рабочего вещества:

(4)

где Q н и Q х – соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство

Следовательно, используя один объект в качестве нагревателя, а другой – в качестве холодильника и проведя между ними цикл Карно, можно определить отношение температур объектов путем измерения отношения теплоты, взятой от одного объекта и отданной другому. Полученная шкала температур не зависит от свойств рабочего вещества и называется абсолютной шкалой температур. Чтобы абсолютная температура имела определенное значение, было предложено принять разность термодинамических температур между точками кипения воды Т кв и таяния льда Т тл равной 100 0 . Принятие такой разности преследовало цель сохранения преемственности числового значения термодинамической температурной шкалы от стоградусной температурной шкалы Цельсия. Т.О., обозначая количество теплоты, полученной от нагревателя (кипящая вода) и отдаваемой холодильнику (тающий лед), соответственно через Q кв и Q тл, и приняв Т кв – Т тл = 100, получим:

и (6)

Для любой температуры Т нагревателя при неизменном значении Т тл холодильника и количества теплоты Q тл, отдаваемой ему рабочим веществом машины Карно, будем иметь:

(7)

Уравнение (6) является уравнением стоградусной термодинамической шкалы температур и показывает, что значение температуры Т по данной шкале линейно связано с количеством теплоты Q, полученной рабочим веществом тепловой машины при совершении ею цикла Карно, и, как следствие, не зависит от свойств термодинамического вещества. За один градус термодинамической температуры принимают такую разность между температурой тела и температурой таяния льда, при которой производимая по обратному циклу Карно работа равна 1/100 части работы, совершаемой в цикле Карно между температурой кипения воды и таяния льда (при условии, что в обоих циклах количество теплоты, отдаваемой холодильнику, одинаково).

Из определения к.п.д. следует, что при максимальном значении h=1 должна быть равна нулю Т х. Эта наименьшая температура была названа Кельвином абсолютным нулем. Температуру по термодинамической шкале обозначают «К».

Термодинамическая шкала температур, основанная на двух реперных точках, обладает недостаточной точностью измерения. Практически трудно воспроизвести температуры указанных точек, т.к. они зависят от давления, а также от содержания солей в воде. Поэтому Кельвин и Менделеев высказали соображение о целесообразности построения термодинамической шкалы температур по одной реперной точке.

Консультативный комитет по термометрии Международного комитета мер и весов в 1954 году принял рекомендацию о переходе к определению термодинамической шкалы с использованием одной реперной точки – тройной точки воды (точки равновесия воды в твердой, жидкой и газообразной фазах), которая легко воспроизводится в специальных сосудах с погрешность не более 0,0001 К. Температура этой точки принята равной 273, 16 К, т.е. выше температуры таяния льда на 0,01 К. Такое число выбрано для того, чтобы значения температур по новой шкале практически не отличались от старой шкалы Цельсия с двумя реперными точками. Второй реперной точкой является абсолютный нуль, который практически не реализуется, но имеет строго фиксированной положение.

В 1967 году XIII Генеральная ассамблея по мерам и весам уточнила определение единицы термодинамической температуры в следующей редакции: «Кельвин – 1/273,16 часть термодинамической температуры тройной точки воды». Термодинамическая температура может быть выражена также в градусах Цельсия:

t = T – 273,15 K (8)



Понравилась статья? Поделитесь ей