Контакты

Как находить корень уравнения с корнями. Способы решения иррациональных уравнений

Хотя пугающий вид символа квадратного корня и может заставить съежиться человека, не сильного в математике, задачи с квадратным корнем не такие уж и трудные, как это может вначале показаться. Простые задачи с квадратным корнем довольно часто можно решить так же легко, как обычные задачи с умножением или делением. С другой стороны, более сложные задачи могут потребовать некоторых усилий, но с правильным подходом даже они не составят вам труда. Начните решать задачи с корнем уже сегодня, чтобы научиться этому радикально новому математическому умению!

Шаги

Часть 1

Понимание квадратов чисел и квадратных корней
  1. Возведите число в квадрат, умножив его само на себя. Для того чтобы понять квадратные корни, лучше начать с квадратов чисел. Квадраты чисел довольно просты: возведение числа в квадрат означает умножение его само на себя. Например, 3 в квадрате это то же самое, что и 3 × 3 = 9, а 9 в квадрате это то же самое, что и 9 × 9 = 81. Квадраты помечаются написанием небольшой цифры «2» справа над возводящим в квадрат числом. Пример: 3 2 , 9 2 , 100 2 и так далее.

    • Попробуйте сами возвести в квадрат еще несколько чисел, чтобы опробовать эту концепцию. Помните, возведение числа в квадрат означает, что это число следует умножить само на себя. Это можно сделать даже для отрицательных чисел. В таком случае результат всегда будет положительным. Например: -8 2 = -8 × -8 = 64 .
  2. Когда речь идет о квадратных корнях, то здесь идет обратный процесс возведению в квадрат. Символ корня (√, его также называют радикалом) по существу означает противоположность символа 2 . Когда вы видите радикал, вы должны спросить себя: «Какое число может умножиться само на себя, чтобы получилось число под корнем?». Например, если вы видите √(9), тогда вы должны найти число, которое при возведении в квадрат давало бы число девять. В нашем случае этим числом будет три, потому что 3 2 = 9.

    • Рассмотрим еще один пример и найдем корень из 25 (√(25)). Это означает, что нам необходимо найти число, которое бы в квадрате давало нам 25. Так как 5 2 = 5 × 5 = 25, можно сказать, что √(25) = 5.
    • Вы также может думать об этом, как об «аннулировании» возведения в квадрат. Например, если нам необходимо найти √(64), квадратный корень 64, то давайте думать об этом числе, как о 8 2 . Так как символ корня «отменяет» возведение в квадрат, то мы можем сказать, что √(64) = √(8 2) = 8.
  3. Знайте разницу между идеальным и не идеальным возведением в квадрат. До этих пор ответами на наши задачи с корнем были хорошие и круглые числа, но это не всегда так. Ответами задач с квадратным корнем могут быть очень длинные и неудобные числа с десятичной дробью. Числа, корень которых представляет собой целые числа (другими словами, числа которые не являются дробью) называются полными квадратами. Все вышеупомянутые примеры (9, 25 и 64) являются полными квадратами, потому что их корнем будет целое число (3,5 и 8).

    • С другой стороны, числа, которые при возведении под корень не дают целого числа, называются неполными квадратами. Если поставить одно из этих чисел под корень, то вы получите число с десятичной дробью. Иногда такое число может оказаться весьма длинным. Например, √(13) = 3,605551275464...
  4. Запомните первые 1-12 полных квадратов. Как вы, вероятно, уже заметили, найти корень полного квадрата довольно легко! Из-за того, что эти задачи такие простые, стоит запомнить корни первой дюжины полных квадратов. Вы не раз столкнетесь с этими числами, так что потратьте немного времени, чтобы запомнить их пораньше и сэкономить время в будущем.

    • 1 2 = 1 × 1 = 1
    • 2 2 = 2 × 2 = 4
    • 3 2 = 3 × 3 = 9
    • 4 2 = 4 × 4 = 16
    • 5 2 = 5 × 5 = 25
    • 6 2 = 6 × 6 = 36
    • 7 2 = 7 × 7 = 49
    • 8 2 = 8 × 8 = 64
    • 9 2 = 9 × 9 = 81
    • 10 2 = 10 × 10 = 100
    • 11 2 = 11 × 11 = 121
    • 12 2 = 12 × 12 = 144
  5. Упростите корни, убрав из него полные квадраты, если это возможно. Найти корень неполного квадрата иногда может оказаться нелегко, особенно если вы не используете калькулятор (в разделе ниже вы найдете несколько трюков, как сделать этот процесс легче). Однако зачастую можно упростить число под корнем, чтобы с ним было легче работать. Чтобы сделать это, вам просто необходимо разделить число под корнем на множители, а затем найти корень множителя, который является полным квадратом, и записать его снаружи корня. Это проще, чем кажется. Читайте далее, чтобы получить больше информации.

    • Давайте предположим, что нам необходимо найти квадратный корень 900. На первый взгляд это кажется довольно тяжелой задачей! Однако это не будет так тяжело, если мы разделим число 900 на множители. Множители – это числа, которые умножаются друг на друга для того, чтобы дать новое число. Например, число 6 можно получить, умножив 1 × 6 и 2 × 3, его множителями будут числа 1, 2, 3 и 6.
    • Вместо того чтобы искать корень числа 900, что немного затруднительно, давайте запишем 900, как умножение 9 × 100. Теперь, когда число 9, которое является полным квадратом, отделено от 100, мы можем найти его корень. √(9 × 100) = √(9) × √(100) = 3 × √(100). Другими словами, √(900) = 3√(100).
    • Мы даже можем пойти еще дальше, разделив 100 на два множителя, 25 и 4. √(100) = √(25 × 4) = √(25) × √(4) = 5 × 2 = 10. Поэтому мы можем сказать, что √(900) = 3(10) = 30
  6. Используйте мнимые числа, чтобы найти корень отрицательного числа. Спросите себя, какое число при умножении само на себя даст -16? Это не 4 и не -4, так как возведение этих чисел в квадрат даст нам положительное число 16. Сдались? На самом деле не существует способа записать корень -16 или любого другого отрицательного числа обычными числами. В таком случае мы должны подставить мнимые числа (обычно в форме букв или символов), чтобы они оказались вместо корня отрицательного числа. Например, переменная «i» обычно используется для возведения под корень числа -1. Как правило, корнем отрицательного числа всегда будет мнимое число (или включенное в него).

    • Знайте, что хотя мнимые числа и не могут быть представлены обычными цифрами, к ним все равно можно относиться, как к таковым. Например, квадратный корень отрицательного числа можно возвести в квадрат, чтобы придать этим отрицательным числам, как и любым другим, квадратный корень. Например, i 2 = -1

    Часть 2

    Использование алгоритма деления столбиком
    1. Запишите задачу с корнем, как задачу деления столбиком. Хотя это может отнять довольно много времени, таким образом, вы сможете решить задачу с корнем неполных квадратов, не прибегая к помощи калькулятора. Для этого мы воспользуемся методом решения (или алгоритмом), который похож (но не точно такой же) на обычное деление столбиком.

      • Для начала запишите задачу с корнем в такую же форму, что и при делении столбиком. Предположим, что мы хотим найти квадратный корень числа 6,45, которое точно не является полным квадратом. Сперва мы напишем обычный символ квадрата, а затем под ним мы напишем число. Далее над числом мы нарисуем линию, чтобы оно оказалось в небольшой «коробочке», так же как и при делении столбиком. После этого у нас получится корень с длинным хвостом и числом 6,45 под ним.
      • Над корнем мы будем писать числа, так что обязательно оставьте там место.
    2. Сгруппируйте цифры по парам. Для того чтобы начать решать задачу, необходимо сгруппировать цифры числа под радикалом по парам, начав с точки в десятичной дроби. Если хотите, можете делать небольшие отметки (вроде точек, косой линии, запятых и прочего) между парами, чтобы не запутаться.

      • В нашем примере, мы должны разделить на пары число 6,45 следующим образом: 6-,45-00. Обратите внимание, что слева присутствует «оставшаяся» цифра – это нормально.
    3. Найдите наибольшее число, квадрат которого меньше или равен первой «группе». Начните с первого числа или пары слева. Выберите наибольшее число, квадрат которого меньше или равен оставшейся «группе». Например, если бы группа была равна 37, вы бы выбрали число 6, потому что 6 2 = 36 < 37, а 7 2 = 49 > 37. Запишите это число над первой группой. Это будет первой цифрой вашего ответа.

      • В нашем примере, первой группой в 6-,45-00 будет цифра 6. Наибольшее число, которое в квадрате будет меньше или равно 6 это 2 2 = 4. Напишите цифру 2 над цифрой 6, которая стоит под корнем.
    4. Удвойте только что написанное число, затем опустите его под корень и отнимите. Возьмите первую цифру вашего ответа (число, которое вы только что нашли) и удвойте ее. Запишите результат под первой своей группой и отнимите, чтобы найти разницу. Опустите следующую пару чисел рядом с ответом. И наконец, напишите слева последнюю цифру удвоения первой цифры своего ответа, а рядом оставьте пробел.

      • В нашем примере, мы начнем с удвоения цифры 2, которая является первой цифрой нашего ответа. 2 × 2 = 4. Затем мы отнимем 4 от 6 (нашей первой «группы»), получив при этом 2. Далее мы опустим следующую группу (45), чтобы получить 245. И наконец, слева мы еще раз напишем цифру 4, оставив в конце небольшой пробел, вот так: 4_
    5. Заполните пробел. Затем вы должны прибавить цифру к правой части записанного числа, которое находится слева. Выберите цифру, перемножив которую с вашим новым числом, вы получили бы максимально большой результат, но который бы был меньше или равен «опущенному «числу». Например, если ваше «опущенное» число равно 1700, а ваше число слева это 40_, в пробел необходимо написать цифру 4, так как 404 × 4 = 1616 < 1700, в то время как 405 × 5 = 2025. Найденная в этом шаге цифра и будет второй цифрой вашего ответа, так вы можете записать ее над знаком корня.

      • В нашем примере, мы должны найти число и записать его в пробелы 4_ × _, что сделает ответ как можно большим, но все же меньшим или равным 245. В нашем случае это цифра 5. 45 × 5 = 225, в то время как 46 × 6 = 276
    6. Продолжайте использовать «пустые» числа, чтобы найти ответ. Продолжайте решать это измененное деление столбиком, пока не начнете получать нули при вычитании «опущенного» числа или пока не получите желаемый уровень точности ответа. Когда вы закончите, числа, которые вы использовали, чтобы заполнить пробелы в каждом шаге (плюс самое первое число) будут составлять число вашего ответа.

      • Продолжая наш пример, мы отнимем 225 от 245, чтобы получить 20. Затем, мы опустим следующую пару чисел, 00, чтобы получить 2000. Удвоим число над знаком корня. Мы получим 25 × 2 = 50. Решив пример с пробелами, 50_ × _ =/< 2,000, мы получим 3. На этом этапе над радикалом у нас будет написано 253, а повторив этот процесс снова, следующим нашим числом будет цифра 9.
    7. Передвиньте точку десятичной дроби вперед от изначального «делимого» числа. Чтобы завершить свой ответ, вы должны поставить точку десятичной дроби в правильное место. К счастью, сделать это довольно легко. Все, что вам необходимо сделать, это выровнять ее относительно точки изначального числа. Например, если под корнем будет стоять число 49,8, вы должны будете поставить точку между двумя цифрами над девяткой и восьмеркой.

      • В нашем примере под радикалом стоит число 6,45, так что мы просто переместим точку и поставим ее между цифрами 2 и 5 в нашем ответе, получив при этом ответ равный 2,539.

    Часть 3

    Быстрый подсчет неполных квадратов
    1. Найдите неполные квадраты, подсчитав их. Когда вы запомните полные квадраты, поиск корня неполных квадратов станет намного проще. Так как вы уже знаете дюжину полных квадратов, любое число, которое попадает в область между этими двумя полными квадратами можно найти, сведя все к приблизительному подсчету между этих значений. Начните с поиска двух полных квадратов, между которыми находится ваше число. Затем определите, к которому из этих чисел ваше число находится ближе.

      • Например, предположим, что нам необходимо найти квадратный корень числа 40. Так как мы запомнили полные квадраты, мы можем сказать, что число 40 находится между 6 2 и 7 2 или числам 36 и 49. Так как 40 больше 6 2 , его корень будет больше 6, а так как оно меньше 7 2 , его корень также будет и меньше 7. 40 немного ближе к 36, чем к 49, так что ответ, скорее всего, будет немного ближе к 6. В следующих нескольких шагах мы сузим наш ответ.
      • Следующее, что вы должны сделать, это возвести приблизительное число в квадрат. Вам, скорее всего, не повезет и вы не получите изначальное число. Оно будет или немного большим, или немного меньшим. Если ваш результат слишком большой, тогда попробуйте снова, но с немного меньшим приблизительным числом (и наоборот, если результат слишком низкий).
        • Умножьте 6,4 само на себя, и вы получите 6,4 × 6,4 = 40,96, что немного больше за изначальное число.
        • Так как наш ответ оказался больше, мы должны умножит число на одну десятую меньше за приблизительное и получить следующее: 6,3 × 6,3 = 39,69. Это немного меньше за изначальное число. Это значит, что квадратный корень 40 находится между 6,3 и 6,4. И снова, так как 39,69 ближе к 40, чем 40,96, мы знаем, что квадратный корень будет ближе к 6,3, чем к 6,4.
    2. Продолжайте расчет. На этом этапе, если вы довольны своим ответом, вы можете просто взять первое угаданное приблизительное значение. Однако если вы хотите получить более точный ответ, все что вам необходимо сделать, это выбрать приблизительное значение с двумя знаками десятичной дроби, которое ставит это приблизительное значение между первыми двумя числами. Продолжив этот подсчет, вы сможете получить для своего ответа три, четыре и больше знаков после запятой. Все зависит от того, насколько далеко вы захотите зайти.

      • В нашем примере давайте выберем 6,33 в качестве приблизительного значения с двумя знаками после запятой. Умножьте 6,33 само на себя, чтобы получить 6,33 × 6,33 = 40,0689. так как это немного больше нашего числа, мы возьмем число поменьше, например, 6,32. 6,32 × 6,32 = 39.9424. Этот ответ немного меньше нашего числа, так что мы знаем, что точный квадратный корень находится между 6,32 и 6,33. Если бы мы захотели продолжить, мы бы продолжали использовать тот же подход, чтобы получить ответ, который становился бы все точнее и точнее.
    • Для быстрого поиска решения, воспользуйтесь калькулятором. Большинство современных калькуляторов могут мгновенно найти квадратный корень числа. Все что вам необходимо сделать, это ввести свое число, а затем нажать на кнопку со знаком корня. Например, для того чтобы найти корень 841, вы должны будет нажать 8, 4, 1 и (√). В результате чего вы получите ответ 39.

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Yandex.RTB R-A-339285-1

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Определение 1

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6: x = 3 .

После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · (x − 1) = 19 , x + 6 · (x + 6 · (x − 8)) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · (8 + 1) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · (x + 17) .

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Определение 2

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Определение 3

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + (y − 6) 2 + (z + 0 , 6) 2 = 26 .

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Пример 1

Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Определение 4

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Пример 2

Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Пример 3

Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · (x − 1) · (x − 2) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня - 2 , 1 и 5 , то пишем - 2 , 1 , 5 или { - 2 , 1 , 5 } .

Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Определение 5

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

Пример 4

Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как (3 , 4) .

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Довольно часто в уравнениях встречается знак корня и многие ошибочно считают, что такие уравнения сложные в решении. Для таких уравнений в математике существует специальный термин, которым и именуют уравнения с корнем - иррациональные уравнения.

Главным отличием в решении уравнений с корнем от других уравнений, например, квадратных, логарифмических, линейных, является то, что они не имеют стандартного алгоритма решения. Поэтому чтобы решить иррациональное уравнение необходимо проанализировать исходные данные и выбрать более подходящий вариант решения.

В большинстве случаев для решения данного рода уравнений используют метод возведения обеих частей уравнения в одну и ту же степень

Допустим, дано следующее уравнение:

\[\sqrt{(5x-16)}=x-2\]

Возводим обе части уравнения в квадрат:

\[\sqrt{(5х-16))}^2 =(x-2)^2\], откуда последовательно получаем:

Получив квадратное уравнение, находим его корни:

Ответ: \

Если выполнить подстановку данных значений в уравнение, то получим верное равенство, что говорит о правильности полученных данных.

Где можно решить уравнение с корнями онлайн решателем?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Уравнения, в которых под знаком корня содержится переменная, называт иррациональными.

Методы решения иррациональных уравнений, как правило, основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо эквивалентно исходному иррациональному уравнению, либо является его следствием. Чаще всего обе части уравнения возводят в одну и ту же степень. При этом получается уравнение, являющееся следствием исходного.

При решении иррациональных уравнений необходимо учитывать следующее:

1) если показатель корня - четное число, то подкоренное выражение должно быть неотрицательно; при этом значение корня также является неотрицательным (опредедение корня с четным показателем степени);

2) если показатель корня - нечетное число, то подкоренное выражение может быть любым действительным числом; в этом случае знак корня совпадает со знаком подкоренного выражения.

Пример 1. Решить уравнение

Возведем обе части уравнения в квадрат.
x 2 - 3 = 1;
Перенесем -3 из левой части уравнения в правую и выполним приведение подобных слагаемых.
x 2 = 4;
Полученное неполное квадратное уравнение имеет два корня -2 и 2.

Произведем проверку полученных корней, для этого произведем подстановку значений переменной x в исходное уравнение.
Проверка.
При x 1 = -2 - истинно:
При x 2 = -2- истинно.
Отсюда следует, что исходное иррациональное уравнение имеет два корня -2 и 2.

Пример 2. Решить уравнение.

Это уравнение можно решить по такой же методике как и в первом примере, но мы поступим иначе.

Найдем ОДЗ данного уравнения. Из определения квадратного корня следует, что в данном уравнении одновременно должны выполнятся два условия:

ОДЗ данного уранения: x.

Ответ: корней нет.

Пример 3. Решить уравнение=+ 2.

Нахождение ОДЗ в этом уравнении представляет собой достаточно трудную задачу. Возведем обе части уравнения в квадрат:
x 3 + 4x - 1 - 8= x 3 - 1 + 4+ 4x;
=0;
x 1 =1; x 2 =0.
Произведя проверку устанавливаем, что x 2 =0 лишний корень.
Ответ: x 1 =1.

Пример 4. Решить уравнение x =.

В этом примере ОДЗ найти легко. ОДЗ этого уравнения: x[-1;).

Возведем обе части этого уравнения в квадрат, в результате получим уравнение x 2 = x + 1. Корни этого уравнения:

Произвести проверку найденных корней трудно. Но, несмотря на то, что оба корня принадлежат ОДЗ утверждать, что оба корня являются корнями исходного уравнения нельзя. Это приведет к ошибке. В данном случае иррациональное уравнение равносильно совокупности двух неравенств и одного уравнения:

x + 10 и x0 и x 2 = x + 1, из которой следует, что отрицательный корень для иррационального уравнения является посторонним и его нужно отбросить.

Пример 5 . Решить уравнение+= 7.

Возведем обе части уравнения в квадрат и выполним приведение подобных членов, перенес слагаемых из одной части равенства в другую и умножение обеих частей на 0,5. В результате мы получим уравнение
= 12, (*) являющееся следствием исходного. Снова возведем обе части уравнения в квадрат. Получим уравнение (х + 5)(20 - х) = 144, являющееся следствием исходного. Полученное уравнение приводится к виду x 2 - 15x + 44 =0.

Это уравнение (также являющееся следствием исходного) имеет корни x 1 = 4, х 2 = 11. Оба корня, как показывает проверка, удовлетворяют исходному уравнению.

Отв. х 1 = 4, х 2 = 11.

Замечание . При возведении уравнений в квадрат учащиеся нередко в уравнениях типа (*) производят перемножение подкоренных выражений, т. е. вместо уравнения = 12, пишут уравнение = 12. Это не приводит к ошибкам, поскольку уравнения являются следствиями уравнений. Следует, однако, иметь в виду, что в общем случае такое перемножение подкоренных выражений дает неравносильные уравнения.

В рассмотренных выше примерах можно было сначала перенести один из радикалов в правую часть уравнения. Тогда в левой части уравнения останется один радикал и после возведения обеих частей уравнения в квадрат в левой части уравнения получится рациональная функция. Такой прием (уединение радикала) довольно часто применяется при решении иррациональных уравнений.

Пример 6 . Решить уравнение-= 3.

Уединив первый радикал, получаем уравнение
=+ 3, равносильное исходному.

Возводя обе части этого уравнения в квадрат, получаем уравнение

x 2 + 5x + 2 = x 2 - 3x + 3 + 6, равносильное уравнению

4x - 5 = 3(*). Это уравнение является следствием исходного уравнения. Возводя обе части уравнения в квадрат, приходим к уравнению
16x 2 - 40x + 25 = 9(x 2 - Зх + 3), или

7x 2 - 13x - 2 = 0.

Это уравнение является следствием уравнения (*) (а значит, и исходного уравнения) и имеет корни. Первый корень x 1 = 2 удовлетворяет исходному уравнению, а второй x 2 =- не удовлетворяет.

Ответ: x = 2.

Заметим, что если бы мы сразу, не уединив один из радикалов, возводили обе части исходного уравнения в квадрат нам бы пришлось выполнить довольно громозкие преобразования.

При решении иррациональных уравнений, кроме уединения радикалов используют и другие методы. Рассмотрим пример использования метода замены неизвестного (метод введения вспомогательной переменной).

Методические разработки к элективному курсу

«Методы решений иррациональных уравнений»»

ВВЕДЕНИЕ

Предлагаемый элективный курс «Методы решений иррациональных уравнений» предназначен для учащихся 11 класса общеобразовательной школы и является предметно-ориентированным, направлен на расширение теоретических и практических знаний учащихся. Элективный курс построен с опорой на знания и умения, получаемые учащимися при изучении математики в средней школе.

Специфика данного курса заключается в том, что он предназначен в первую очередь для учащихся, желающих расширить, углубить, систематизировать, обобщить свои математические знания, изучить единые методы и приемы решения иррациональных уравнений. В программу включены вопросы, частично выходящие за рамки ныне действующих программ по математике и нестандартные методы, которые позволяют более эффективно решать разные задачи.

Большинство заданий ЕГЭ требуют от выпускников владения различными методами решения разного рода уравнений и их систем. Материал, связанный с уравнениями и системами уравнений, составляет значительную часть школьного курса математики. Актуальность выбора темы элективного курса определяется значимостью темы «Иррациональные уравнения» в школьном курсе математики и, вместе с тем, нехваткой времени на рассмотрение нестандартных методов и подходов к решению иррациональных уравнений, которые встречаются в заданиях группы «С» ЕГЭ.

Наряду с основой задачей обучения математике -обеспечение прочного и сознательного овладения учащимися системой математических знаний и умений – данный элективный курс предусматривает формирование устойчивого интереса к предмету, развитие математических способностей, повышение уровня математической культуры учащихся, создает базу для успешной сдачи ЕГЭ и продолжения обучения в ВУЗах.

Цель курса:

Повысить уровень понимания и практической подготовки при решении иррациональных уравнений;

Изучить приёмы и методы решения иррациональных уравнений;

Формировать умение анализировать, выделять главное, формировать элементы творческого поиска на основе приёмов обобщения;

Расширить знания учащихся по данной теме, совершенствовать умения и навыки решения различных задач для успешной сдачи ЕГЭ.

Задачи курса:

Расширение знаний о методах и способах решения алгебраических уравнений;

Обобщение и систематизация знаний при обучении в 10-11 классах и подготовке к ЕГЭ;

Развитие умения самостоятельно приобретать и применять знания;

Приобщение учащихся к работе с математической литературой;

Развитие логического мышления учащихся, их алгоритмической культуры и математической интуиции;

Повышение математической культуры ученика.

Программа элективного курса предполагает изучение различных методов и подходов при решении иррациональных уравнений, отработку практических навыков по рассматриваемым вопросам. Курс рассчитан на 17 часов.

Программа усложнена, превосходит обычный курс обучения, способствует развитию абстрактного мышления, расширяет область познания учащегося. Вместе с тем она сохраняет преемственность с действующими программами, являясь их логическим продолжением.

Учебно-тематический план

п/п

Тема занятий

Кол-во часов

Решение уравнений с учетом области допустимых значений

Решение иррациональных уравнений путем возведения в натуральную степень

Решение уравнений методом введения вспомогательных переменных (метод замены)

Решение уравнения с радикалом третьей степени.

Тождественные преобразования при решении иррациональных уравнений

Нетрадиционные задачи. Задачи группы «С» ЕГЭ

Формы контроля: домашние контрольные, самостоятельные работы, рефераты и исследовательские работы.

В результате обучения данного элективного курса учащиеся должны уметь решать различные иррациональные уравнения, используя стандартные и нестандартные методы и приемы;

    усвоить алгоритм решения стандартных иррациональных уравнений;

    уметь использовать свойства уравнений для решения нестандартных заданий;

    уметь выполнять тождественные преобразования при решении уравнений;

    иметь четкое представление о темах единого государственного экзамена, об основных методах их решений;

    приобрести опыт в выборе методов для решения нестандартных задач.

ОСНОВНАЯ ЧАСТЬ.

Уравнения, в которых неизвестная величина находится под знаком радикала, называются иррациональными.

К простейшим иррациональным уравнениям относятся уравнения вида:

Основная идея решения иррационального уравнения состоит в сведении его к рациональному алгебраическому уравнению, которое либо равносильно исходному иррациональному уравнению, либо является его следствием. При решении иррациональных уравнений речь всегда идет об отыскании действительных корней.

Рассмотрим некоторые способы решения иррациональных уравнений.

1.Решение иррациональных уравнений с учетом области допустимых значений (ОДЗ).

Область допустимых значений иррационального уравнения состоит из тех значений неизвестных, при которых неотрицательными являются все выражения, стоящие под знаком радикала четной степени.

Иногда знание ОДЗ позволяет доказать, что уравнение не имеет решений, а иногда позволяет найти решения уравнения непосредственной подстановкой чисел из ОДЗ .

Пример1 . Решить уравнение .

Решение . Найдя ОДЗ этого уравнения, приходим к выводу, что ОДЗ исходного уравнения – одноэлементное множество . Подставив х=2 в данное уравнение, приходим к выводу, что х=2 – корень исходного уравнения.

Ответ : 2 .

Пример2.

Уравнение не имеет решений, т.к. при каждом допустимом значении переменной сумма двух неотрицательных чисел не может быть отрицательна.

Пример 3.
+ 3 =
.

ОДЗ:

ОДЗ уравнения пустое множество.

Ответ: уравнение корней не имеет.

Пример4. 3
−4

=−(2+
).

ОДЗ:

ОДЗ:
. Проверкой убеждаемся, что х=1 - корень уравнения.

Ответ: 1.

Докажите, что уравнение не имеет

корней.

1.
= 0.

2.
=1.

3. 5
.

4.
+
=2.

5.
=
.

Решите уравнение.

1. .

2. = 0.

3.
= 92.

4. = 0.

5.
+
+(х+3)(2005−х)=0.

2. Возведение обеих частей уравнения в натуральную степень , то есть переход от уравнения

(1)

к уравнению

. (2)

Справедливы следующие утверждения:

1) при любом уравнение (2) является следствием уравнения (1);

2) если (n – нечетное число), то уравнения (1) и (2) равносильны ;

3) если (n – четное число), то уравнение (2) равносильно уравнению

, (3)

а уравнение (3) равносильно совокупности уравнений

. (4)

В частности, уравнение

(5)

равносильно совокупности уравнений (4).

Пример 1 . Решить уравнение

.

Уравнение равносильно системе

откуда следует, что х=1 , а корень не удовлетворяет второму неравенству. При этом грамотное решение не требует проверки.

Ответ: х=1 .

Пример 2 . Решить уравнение .

Решая первое уравнение этой системы, равносильное уравнению , получим корни и . Однако при этих значениях x не выполняется неравенство , и потому данное уравнение не имеет корней.

Ответ : корней нет.

Пример 3 . Решить уравнение

Уединив первый радикал, получаем уравнение

равносильное исходному.

Возводя обе части этого уравнения в квадрат, так как они обе положительны, получаем уравнение

,

которое является следствием исходного уравнения. Возводя обе части этого уравнения в квадрат при условии, что , приходим к уравнению

.

Это уравнение имеет корни , . Первый корень удовлетворяет исходному условию , а второй – не удовлетворяет.

Ответ : х=2 .

Если уравнение содержит два и более радикалов, то их сначала уединяют, а потом возводят в квадрат.

Пример 1.

Уединив первый радикал, получим уравнение , равносильное данному. Возведем в квадрат обе части уравнения:

Выполнив необходимые преобразования, полученное уравнение возведем в квадрат



Выполнив проверку, замечаем, что

не входит в область допустимых значений.

Ответ: 8.

Ответ: 2

Ответ: 3; 1,4 .

3. Многие иррациональные уравнения решаются методом введения вспомогательных переменных.

Удобным средством решения иррациональных уравнений иногда является метод введения новой переменной, или «метод замены». Метод обычно применяется в случае, если в уравнении неоднократно встречается некоторое выражение , зависящее от неизвестной величины. Тогда имеет смысл обозначить это выражение какой-нибудь новой буквой и попытаться решить уравнение сначала относительно введенной неизвестной, а потом уже найти исходную неизвестную.

Удачный выбор новой переменной делает структуру уравнения более прозрачной. Новая переменная иногда очевидна, иногда несколько завуалирована, но «ощущается», а иногда «проявляется» лишь в процессе преобразований.

Пример 1.

Пусть
t>0, тогда

t =
,

t 2 +5t-14=0,

t 1 =-7, t 2 =2. t=-7 не удовлетворяет условию t>0, тогда

,

х 2 -2х-5=0,

х 1 =1-
, х 2 =1+
.

Ответ: 1-
; 1+
.

Пример 2. Решить иррациональное уравнение

Замена:

Обратная замена: /

Ответ:

Пример 3. Решите уравнение .

Сделаем замены: , . Исходное уравнение перепишется в виде , откуда находим, что а = 4b и . Далее, возводя обе части уравнения в квадрат, получаем: Отсюда х = 15 . Осталось сделать проверку:

- верно!

Ответ: 15.

Пример 4 . Решить уравнение

Положив , получим существенно более простое иррациональное уравнение . Возведем обе части уравнения в квадрат: .

; ;

; ; , .

Проверка найденных значений, их подстановка в уравнение показывает, что – корень уравнения, а – посторонний корень.

Возвращаясь к исходной переменной x , получаем уравнение , то есть квадратное уравнение , решив которое находим два корня: ,. Оба корня удовлетворяют исходному уравнению.

Ответ : , .

Замена особенно полезна, если в результате достигается новое качество, например, иррациональное уравнение превращается в рациональное.

Пример 6 . Решить уравнение .

Перепишем уравнение так: .

Видно, что если ввести новую переменную , то уравнение примет вид , откуда - посторонний корень и .

Из уравнения получаем , .

Ответ : , .

Пример 7 . Решить уравнение .

Введем новую переменную , .

В результате исходное иррациональное уравнение принимает вид квадратного

,

откуда учитывая ограничение , получаем . Решая уравнение , получаем корень . Ответ : 2,5.

Задания для самостоятельного решения.

1.
+
=
.

2.
+
=.

3.
.

5.
.

4.Метод введения двух вспомогательных переменных.

Уравнения вида (здесь a , b , c , d некоторые числа, m , n натуральные числа) и ряд других уравнений часто удается решить при помощи введения двух вспомогательных неизвестных: и , где и последующего перехода к эквивалентной системе рациональных уравнений .

Пример 1 . Решить уравнение .

Возведение обеих частей этого уравнения в четвертую степень не обещает ничего хорошего. Если же положить , , то исходное уравнение переписывается так: . Поскольку мы ввели две новые неизвестные, надо найти еще одно уравнение, связывающее y и z . Для этого возведем равенства , в четвертую степень и заметим, что . Итак, надо решить систему уравнений

Возведением в квадрат получаем:

После подстановки имеем: или . Тогда система имеет два решения: , ; , , а система не имеет решений.

Остается решить систему двух уравнений с одним неизвестным

и систему Первая из них дает , вторая дает .

Ответ : , .

Пример 2.

Пусть







Ответ:

5. Уравнения с радикалом третьей степени.
При решении уравнений, содержащих радикалы 3-й степени, бывает полезно пользоваться сложением тождествами:

Пример 1. .
Возведём обе части этого уравнения в 3-ю степень и воспользуемся выше приведённым тождеством:

Заметим, что выражение стоящее в скобках равно 1, что следует из первоначального уравнения. Учитывая это и приводя подобные члены, получим:
Раскроем скобки, приведём подобные члены и решим квадратное уравнение. Его корни и . Если считать (по определению), что корень нечётной степени можно извлекать и из отрицательных чисел, то оба полученных числа являются решениями исходного уравнения.
Ответ: .

6.Умножение обеих частей уравнения на сопряженное одной из них выражение.

Иногда иррациональное уравнение удается решить довольно быстро, если обе его части умножить на удачно подобранную функцию. Конечно, при умножении обеих частей уравнения на некоторую функцию могут появиться посторонние решения, ими могут оказаться нули самой этой функции. Поэтому предлагаемый метод требует обязательного исследования получающихся значений.

Пример 1. Решите уравнение

Решение: Выберем функцию

Умножим обе части уравнения на выбранную функцию:

Приведем подобные слагаемые и получим равносильное уравнение

Сложим исходное уравнение и последнее, получим

Ответ: .

7.Тождественные преобразования при решении иррациональных уравнений

При решении иррациональных уравнений часто приходится применять тождественные преобразования, связанные с использованием известных формул. К сожалению, эти действия иногда столь же небезопасны, так же как возведение в четную степень, – могут приобретаться или теряться решения.

Рассмотрим несколько ситуаций, в которых эти проблемы наступают, и научимся их распознать и предотвращать.

I. Пример 1 . Решить уравнение .

Решение. Здесь применима формула .

Только необходимо задуматься о безопасности ее применения. Нетрудно видеть, что ее левая и правая части имеют разные области определения и что это равенство верно лишь при условии . Поэтому исходное уравнение равносильно системе

Решая уравнение этой системы, получим корни и . Второй корень не удовлетворяет совокупности неравенств системы и, следовательно, является посторонним корнем исходного уравнения.

Ответ: -1 .

II .Следующее опасное преобразование при решении иррациональных уравнений, определяется формулой .

Если пользоваться этой формулой слева направо, расширяется ОДЗ и можно приобрести посторонние решения. Действительно, в левой части обе функции и должны быть неотрицательны; а в правой неотрицательным должно быть их произведение.

Рассмотрим пример, где реализуется проблема с использованием формулы .

Пример 2 . Решить уравнение .

Решение. Попробуем решить это уравнение разложением на множители

Заметим, что при этом действии оказалось потерянным решение , так как оно подходит к исходному уравнению и уже не подходит к полученному: не имеет смысла при . Поэтому это уравнение лучше решать обычным возведением в квадрат

Решая уравнение этой системы, получим корни и . Оба корня удовлетворяют неравенству системы.

Ответ: , .

III .Существует еще более опасное действие – сокращение на общий множитель.

Пример 3 . Решить уравнение .

Неверное рассуждение: Сократим обе части уравнения на , получим .

Нет ничего более опасного и неправильного, чем это действие. Во-первых, подходящее решение исходного уравнения было потеряно; во-вторых, было приобретено два посторонних решения . Получается, что новое уравнение не имеет ничего общего с исходным! Приведем правильное решение.

Решение . Перенесем все члены в левую часть уравнения и разложим ее на множители

.

Это уравнение равносильно системе

которая имеет единственное решение .

Ответ: 3 .

ЗАКЛЮЧЕНИЕ.

В рамках изучения элективного курса показаны нестандартные приемы решения сложных задач, которые успешно развивают логическое мышление, умение найти среди множества способов решения тот, который комфортен для ученика и рационален. Этот курс требует от учащихся большой самостоятельной работы, способствует подготовке учащихся к продолжению образования, повышения уровня математической культуры.

В работе были рассмотрены основные методы решения иррациональных уравнений, некоторые подходы к решению уравнений высших степеней, использование которых предполагается при решении заданий ЕГЭ, а также при поступлении в ВУЗы и продолжении математического образования. Также было раскрыто содержание основных понятий и утверждений, относящихся к теории решения иррациональных уравнений. Определив самый распространённый метод решения уравнений, выявили его применение в стандартных и не стандартных ситуациях. Кроме того, были рассмотрены типичные ошибки при выполнении тождественных преобразований и способы их преодоления.

При прохождении курса учащиеся получат возможность овладеть различными методами и приемами решения уравнений, при этом научатся систематизировать и обобщать теоретические сведения, самостоятельно заниматься поиском решения некоторых проблем и в связи с этим составлять ряд задач и упражнений по данным темам. Выбор сложного материала поможет школьникам проявить себя в исследовательской деятельности.

Положительной стороной курса является возможность дальнейшего применения учащимися изученного материала при сдаче ЕГЭ, поступлении в ВУЗы.

Отрицательной стороной является то, что не каждый учащийся в состоянии овладеть всеми приемами данного курса, даже имея на то желание, ввиду трудности большинства решаемых задач.

ЛИТЕРАТУРА:

    Шарыгин И.Ф. « Математика для поступающих в вузы».-3-е изд.,-М.:Дрофа, 2000.

    Уравнения и неравенства. Справочное пособие./ Вавилов В.В., Мельников И.И., Олехник С.Н., Пасиченко П.И. –М.: Экзамен,1998.

    Черкасов О.Ю., Якушев А.Г. «Математика: интенсивный курс подготовки к экзамену». – 8-е изд., испр. и доп. – М.:Айрис, 2003. – (Домашний репетитор)

    Балаян Э.Н. Комплексные упражнения и варианты тренировочных заданий к ЕГЭ по математике. Ростов на – Дону: Изд-во «Феникс», 2004.

    Сканави М.И. «Сборник задач по математике для поступающих в вузы». - М., «Высшая школа»,1998.

    Игусман О.С. «Математика на устном экзамене». - М.,Айрис,1999.

    Экзаменационные материалы для подготовки к ЕГЭ – 2008 – 2012.

    В.В.Кочагин, М.Н.Кочагина «ЕГЭ – 2010. Математика. Репетитор» Москва «Просвещение» 2010г.

    В.А.Гусев, А.Г.Мордкович «Математика. Справочные материалы» Москва «Просвещение» 1988г.



Понравилась статья? Поделитесь ей