Контакты

Какие бывают установки вакуумного напыления. Производители вакуумных установок. Плазмоионное распыление в несамостоятельном газовом разряде

Вакуумная установка – это по сути та же система, которая состоит из определенного количества компонентов. Каждый из элементов подобной установки выполняет определенные функции. Один из самых главных компонентов вакуумных установок – это вакуумный насос, коих может быть огромное количество. Зачастую, устройство строится таким образом, чтобы внутри него взаимодействовали все компоненты. Лишь в случае подобного расклада, можно будет добиться по-настоящему высоких показателей производительности. Что касается главной задачи подобных установок, то, несомненно – то создание уровня глубокого технического вакуума.

Подобные процессы играют особенно большую роль, если речь идет об откачке воздушных или же газовых смесей. Но не стоит упускать тот момент, что эффективно использовать вакуумные установки можно не только в промышленности, а еще и в домашних условиях. В домашних задачах, вакуумные установки работают без какой-либо ощутимой нагрузки и способны выдавать огромнейшие показатели производительности.

Что касается востребованности предприятий в подобных установках, то в этом и вовсе нет никаких сомнений. На данный момент огромное количество производителей проявляется интерес к продукции подобного предназначения. Многие производители готовы даже переплачивать за то, чтобы первыми получать подобные установки.

Сейчас мы рассмотрим те отрасли, где вакуумные установки уже стали неотъемлемой частью системы:

  • Текстильная промышленность
  • Машиностроение
  • Металлургия
  • Пищевая промышленность
  • Химическая отрасль
  • Машиностроение
  • Фармацевтика

Но это еще далеко не весь список отраслей, которые нуждаются в оборудовании подобного типа. Но даже глядя на этот список, создается впечатление, что это действительно один из наиболее практичных вариантов среди всего оборудования подобного типа.

Если же стандартной комплектации вакуумной установки пользователю недостаточно, то он без каких-либо проблем может докупить еще и дополнительное оборудование. Предназначено оно для того, чтобы сделать процесс более легким и в то же время эффективным. Многие пользователи пользуются подобными привилегиями и покупают дополнительное оборудование, дабы значительно упростить рабочий процесс и сделать его более надежным.

Главными задачами вакуумных установок можно назвать создание и поддержку высокого и сверхвысокого уровня вакуума внутри системы. Но это еще далеко не весь список возможностей подобных установок. Они также могут быть весьма эффективными при создании различных деталей, что является их основным преимуществом. Но все-таки чаще всего подобные установки покупают для того, чтобы образовывать сверхвысокий вакуум, так как другие установки справиться с этим не в силах.

Но, несмотря на то, что все нахваливают главные элементы подобных систем, есть еще и немалое количество второстепенных элементов, которые также играют особую роль. Ведь получать максимальный эффект от вакуумных установок можно только в том случае, если все элементы системы будут активно взаимодействовать друг с другом. В ином же случае, эффекта от подобного оборудования попросту не будет.

Главные элементы вакуумной установки:

  • Вакуумметр – устройство, для измерения давления внутри системы и контроля ключевых процессов, которые с ним связаны.
  • Вакуумные баллоны – один из ключевых элементов, который важен в процессе образования вакуума внутри системы.
  • Вакуумные трубопроводы – это скорее дополнительное оборудование, которое позволяет производить движение всех жидкостей по определенным отсекам установки.
  • Вакуумные насосы – это фундаментальная часть установки, которая выполняет практически все функции, и без которой образование вакуума внутри системы и вовсе было бы невозможным.

Современный вакуумный рынок предоставляет нам огромный выбор подобной продукции. Одной из лидирующих компаний на рынке является Busch. Данная компания уже давно успела о себе заявить и по сей день держит свою репутацию на высоком уровне.

Одно из главных преимуществ установок компании Busch –это качество, которое находится на максимально высоком уровне. Сейчас на рынке можно увидеть сразу несколько серий продукции данной компании.

  • Вакуумные установки
  • Воздуходувки
  • Вакуумные насосы

Во всех из вышеперечисленных направлений на данный момент компании нету равных. Данный производитель действительно мог занять весомую нишу рынка, чем самым доказав, что именно его продукция соответствует всем стандартам и достойна, занимать первую позицию на рынке.

Установки вакуумного напыления УВН

Установка вакуумного напыления УВН – это агрегат, имеющий целый ряд функциональных особенностей. Но все-таки наиболее главным моментом является сфера применения подобного оборудования. Установки подобного типа активно используются практически во всех отраслях, из-за чего назвать какую-то одну из них весьма проблематично.

Одним из явных преимуществ подобных установок, является наличие четырёх съёмных технологических модулей. Каждый из них выполняет определенные функции, что собственно и позволяет добиваться высоких показателей производительности.

УВН-1М – это одна из наиболее практичных моделей подобных установок, которая, несмотря на свою среднюю стоимость, смогла вместить в себе огромное количество положительных качеств. Данный агрегат может похвастаться не только высокими показателями производительности, а еще и высоким качеством, стабильностью и широкой сферой применения.

Что касается внешнего вида подобных установок, то он не настолько прост и все-таки имеет определенные дополнения. Чаще всего модули подобных систем закрыты специальной вакуумной камерой из стекла. Данное приспособление позволяет защитить модули от различных угроз.

Но это еще далеко не весь список преимуществ, ведь кроме всего прочего есть огромное количество аспектов, которые говорят о том, что подобные установки действительно очень эффективны.

Вакуумные литейные установки

Одно из главных предназначений подобных установок – это литье стоматологических сплавов. С подобной задачей, вакуумные установки данного типа справляются довольно неплохо. Именно поэтому, многие и стали покупать подобное оборудование для его подобной эксплуатации.

Стоит отметить наличие у подобных установок активного охлаждения, которое позволяет установке не поддаваться перегреву, что также играет далеко не самую последнюю роль. Ключевым компонентом подобных установок можно считать инертный газ, который дает возможность работать устройству наиболее надежно и избегать окисления разного рода сплавов.

Подобные установки чаще всего используются именно в стоматологическом направлении. При желании, их можно использовать и в других отраслях., но особой пользы от него будет получить довольно проблематично.

Установка вакуумной металлизации

Нанесение качественного покрытия на изделия – это далеко не самый легкий процесс. Дабы результат подобной процедуры был качественным, для этого надо использовать специальное оборудование. Лучше всего в этом себя проявляет установка вакуумной металлизации. Сам процесс металлизации представляет собой нанесение тонкой пленки, которая позволяет защитить материал от воздействия разных факторов.

Одна из наиболее продаваемых вариаций подобных установок – это вариант с вертикальными дверцами. В плане удобства, данный вариант значительно превосходит обычный, так как загружать и выгружать материал намного проще.

Материалы, обрабатываемые в установках вакуумной металлизации:

  • Стекло
  • Пластик
  • Металл
  • Керамика
Производители вакуумных установок

Роль производителя также является далеко не самой последней. Лучше всего покупать подобные установки у проверенных поставщиков, которые могут предоставить вам все гарантии качества и надежности продукции.

Наиболее надежные производители вакуумных установок:

  • Edwards
  • Becker
  • Atlas Copco

Все вышеперечисленные производители являются максимально надежными и им можно доверять. Это можно понять по показателям их продаваемости, так как все эти компании входят в пятерку наиболее качественных и перспективных компаний по продаже вакуумных установок.

Для приобретения товарного вида и определенных технических свойств на современном производстве все готовые изделия покрываются различными материалами. Особенно актуальным этот вопрос является для металлических деталей, где покрытие играет не столько декоративную роль, сколько защищает металл от коррозии и прочих вредных факторов окружающей среды.

Вакуумное напыление

В современном производстве самой продвинутой технологией нанесения покрытий на детали является вакуумное напыление. Технология заключается в прямой конденсации пара наносимого покрытия на поверхность детали. Определяется три основных стадии такого напыления:

    Испарение вещества, из которого будет создаваться покрытие;

    Перенос созданного пара к поверхности, на которую вещество будет наноситься;

    Конденсация пара на поверхность детали и создание покрытия из него.

Установка для хромирования литых дисков

Методы вакуумного напыления

Помимо вакуума, в напылении могут учувствовать и другие физические процессы. Нижеприведенная классификация также будет касаться и веществ, которые будут напыляться на поверхность.

Вакуумно-плазменное напыление

Вакуумно-дуговое нанесение покрытий проводится по следующему механизму. Катодом выступает поверхность, на которую необходимо нанесение пленки, анодом выступает подложка газоразряда. Когда дуга накаляет атмосферу до предельной температуры, происходит переход напылительного материала в газообразную фазу и перенос его к катоду. Затем молекулы напылителя конденсируются на поверхности изделия, образуя однородный слой. Однородность в установках вакуумно-дугового напыления может быть отрегулирована вплоть до получения исходного изделия с разводами напылителя.

Такая сложная технология применяется для нанесения сверхтвердых покрытий на режущие и сверлящие инструменты. Крепкие износостойкие буры для перфораторов создаются с помощью вакуумно-плазменного напыления.

Высокопрочные буры для перфоратора

Ионно-вакуумное напыление

Считается самым экологически чистым способом нанести покрытие на любую металлическую поверхность. Минус заключается в дорогостоящем оборудовании, далеко не каждое предприятие может себе позволить его покупку и установку.

Жесткие требования также предъявляются к чистоте поверхности, однако конечный результат превосходит все ожидания. Нанесенное покрытие отличается высокой однородностью, прочностью и износоустойчивостью, поэтому таким способом напыляют покрытия на детали и механизмы, которые будут эксплуатироваться в жестких климатических условиях. Является последней операцией, после которой дальнейшая обработка деталей не допускается – ни сварки, ни резки быть не должно.

Вакуумное напыление алюминия

Нанесение алюминия считается самым популярным способом металлизации практически любой поверхности. Универсальность алюминия позволяет наносить его на такие необычные поверхности, как пластик и стекло, причем, в отличие от остальных металлов, здесь не нужно дополнительное лаковое покрытие для прочности. Алюминий обычно используется в декоративных целях – им обрабатываются автомобильные аксессуары и отражатели для фар, косметические элементы, ручки шкафов и дверей, швейные принадлежности. Этот металл хоть и не отличается высокой прочностью, однако отработка технологии позволила сильно уменьшить стоимость такого напыления, делав его самым распространенным в мире.

Отражатель автомобильной фары с алюминиевым покрытием

Вакуумное напыление металлов

Помимо алюминия, имеется ряд не менее распространенных металлов для напыления. Благодаря различным физическим и химическим свойствам они нашли применение абсолютно во всех отраслях промышленности. Основные назначения напыленных металлов:

    улучшение проводимости;

    повышение изоляции;

    придание износоустойчивых и антикоррозийных свойств.

Регулирование температуры при нанесении слоя покрытия позволяет придать конечному изделию практически любой оттенок, этим часто пользуются для нанесения покрытий «под золото» (используются никеле-титановые сплавы).

Широкое распространение напыление титана и серебра нашли в медицине. Эти уникальные металлы очень хорошо взаимодействуют с организмом человека и имеют антибактериальные свойства. Имплантаты и хирургические инструменты (а также стоматологические и прочие) практически везде имеют напыление серебра – высокая гарантия прочности и стерильности инструмента.

Вакуумное ионно-плазменное напыление

Под воздействием высоких температур покрытие не просто конденсируется на поверхности детали, оно буквально запекается на нем, что придает конечному изделию очень высокие технические характеристики – износоустойчивость при механическом воздействии и хорошую сопротивляемость жестким погодным условиям.

Установка вакуумного напыления УВН

Приборы типа УВН – современные высокотехнологические установки вакуумного напыления. В зависимости от назначения, может оборудоваться любыми устройствами для испарения вещества и его переноса на поверхность детали. Строение:

    Технологическая камера закрытого типа – область, где размещается деталь, которая обрабатывается в процессе вакуумного напыления.

    Блок управления – панель с кнопками и регуляторами, которые позволяют задавать все необходимые параметры перед началом работы. Современные варианты установок вакуумного напыления оборудованы цифровыми дисплеями для отображения параметров процесса в реальном времени.

    Корпус установки скрывает под собой все важные механические и электронные узлы агрегата, защищая их от случайного и несанкционированного вмешательства, а также обеспечивая безопасность оператору станка. В зависимости от размера машины, комплектуется колесиками (с тормозными колодками, для маленьких моделей), либо устанавливается стационарно (для мощных и производительных камер).

Классическая УВН

 Вакуумное напыление основано на создании направленного потока частиц (атомов, молекул, кластеров) наносимого материала на поверхность изделий и их конденсации.
Процесс включает несколько стадий: переход напыляемого вещества или материала из конденсированной фазы в газовую, перенос молекул газовой фазы к поверхности изделия, конденсацию их на поверхность, образование и рост зародышей, формирование пленки.
 Вакуумное напыление - перенос частиц напыляемого вещества от источника (места его перевода в газовую фазу) к поверхности детали осуществляется по прямолинейным траекториям при вакууме 10 -2 Па и ниже (вакуумное испарение) и путем диффузионного и конвективного переноса в плазме при давлениях 1 Па (катодное распыление) и 10 -1 -10 -2 Па (магнетронное и ионно-плазменное распыление). Судьба каждой из частиц напыляемого вещества при соударении с поверхностью детали зависит от ее энергии, температуры поверхности и химического сродства материалов пленки и детали. Атомы или молекулы, достигшие поверхности, могут либо отразиться от нее, либо адсорбироваться и через некоторое время покинуть ее (десорбция), либо адсорбироваться и образовывать на поверхности конденсат (конденсация). При высоких энергиях частиц, большой температуре поверхности и малом химическом сродстве частица отражается поверхностью.
 Температура поверхности детали, выше которой все частицы отражаются от нее и пленка не образуется, называется критической температурой напыления вакуумного; ее значение зависит от природы материалов пленки и поверхности детали, и от состояния поверхности. При очень малых потоках испаряемых частиц, даже если эти частицы на поверхности адсорбируются, но редко встречаются с другими такими же частицами, они десорбируются и не могут образовывать зародышей, т.е. пленка не растет. Критической плотностью потока испаряемых частиц для данной температуры поверхности называется наименьшая плотность, при которой частицы конденсируются и формируют пленку.
 Структура напыленных пленок зависит от свойств материала, состояния и температуры поверхности, скорости напыления. Пленки могут быть аморфными (стеклообразными, например оксиды, Si), поликристаллическими (металлы, сплавы, Si) или монокристаллическими (например, полупроводниковые пленки, полученные молекулярно-лучевой эпитаксией). Для упорядочения структуры и уменьшения внутренних механических напряжений пленок, повышения стабильности их свойств и улучшения адгезии к поверхности изделий сразу же после напыления без нарушения вакуума производят отжиг пленок при температурах, несколько превышающих температуру поверхности при напылении. Часто посредством вакуумного напыления создают многослойные пленочные структуры из различных материалов.
 Напыление вакуумное используют в планарной технологии полупроводниковых микросхем, в производстве тонкопленочных гибридных схем, изделий пъезотехники, акустоэлектроники и др. (нанесение проводящих, диэлектрических, защитных слоев, масок и др.), в оптике (нанесение просветляющих, отражающих и др. покрытий), ограниченно - при металлизации поверхности пластмассовых и стеклянных изделий, тонировании стекол автомобилей. Методом напыления вакуумного наносят металлы (Al, Au, Cu, Cr, Ni, V, Ti и др.), сплавы (например, NiCr, CrNiSi), химические соединения (силициды, оксиды, бориды, карбиды и др.).

 
Рис. П2.1.

 Для вакуумного напыления используют технологическое оборудование периодического, полунепрерывного и непрерывного действия. Установки периодического действия осуществляют один цикл нанесения пленок при заданном числе загружаемых изделий. Установки непрерывного действия используют при серийном и массовом производстве. Они бывают двух видов: многокамерные и многопозиционные однокамерные. Первые состоят из последовательно расположенных напылительных модулей, в каждом из которых осуществляется напыление пленок определенных материалов или их термическая обработка и контроль. Модули объединены между собой шлюзовыми камерами и транспортирующим конвейерным устройством. Многопозиционные однокамерные установки содержат несколько напылительных постов (расположенных в одной вакуумной камере), соединяемых транспортным устройством конвейерного или роторного типа. Основные узлы и системы установок для вакуумного напыления представляют собой самостоятельные устройства, выполняющие заданные функции:
 ·создание вакуума;
 ·испарение или распыление материала пленок;
 ·транспортировка и осаждение покрытия;
 ·контроль режимов вакуумного напыления и свойств пленок;
 ·электропитание.

 Установки вакуумного напыления

 Вакуумная установка резистивного напыления серии DV-502B (Рис. П2.2.) (данная установка является настольной)


Рис. П2.2.

 Установка ВАТТ1600-4ДК (Рис. П2.4.) предназначена для нанесения комбинированного покрытия, которое может состоять из слоя металла, слоя соединения этого металла (оксид, нитрид, карбид) и слоя SiOx.


Рис. П2.3.

 Применяя различные соединения титана возможно получать различные оттенки золотого, синего, зеленого, черного и некоторых других цветов (Рис. П2.4.). Покрытия можно наносить на листы нержавеющей стали с любой обработкой поверхности: зеркальной, шлифованной, декоративной текстурированной или обычной матовой. Габариты вакуумной установки позволяют напылять листы размером 1500х3000 мм. Листы после напыления могут быть покрыты самоклеющейся защитной пленкой. Стоимость напыления – от 700 руб./кв.м.

 

Рис. П2.4. Применение вакуумного напыления.

Нержавеющая сталь:

 Для вакуумного напыления нитридом титана используют подложку из нержавеющей стали.
 ·элегантность и изящество в отделке;
 ·коррозионная стойкость, устойчивость к воздействию атмосферных воздействий;
 ·соответствие самым строгим гигиеническим требованиям;
 ·легкость ухода и долговечность;
 ·термостойкость и пожаробезопасность;
 ·отличное сочетание с другими отделочными материалами (стекло, пластик, дерево, камень).

Технические характеристики:

 ·Материал подложки - сталь нержавеюшая, 08Х18Н10 (AISI 304);
 ·Толщина подложки 0,5мм – 1,5 мм;
 ·Покрытие нитрид титана, толщина 0,2-6 мкм;
 ·Цвет покрытия - различные оттенки золотого;
 ·Светорассеивание - от зеркального до матового;
 ·Механические свойства - допускает многократный изгиб и холодную штамповку;
 ·Атмосферостойкость - не менее 50 лет.

Метод получения материала

 Покрытие на нержавеющей стали TIN, TiO2 и TiON получено методом ионно-плазменного напыления в вакуумной камере.
 Листы нержавеющей стали, после предварительной обработки, которая обеспечивает высокую отражающую способность покрытия, помещаются в герметичную вакуумную камеру. Во время процесса напыления в камере создается глубокий вакуум, который обеспечивает заданный цвет и стойкость покрытий.
 При ионно - плазменном напылении ионы плазмы, обладающие высокой энергией, выбивают с поверхности титанового листа атомы титана, которые в свою очередь, проходя через высокоразреженное облако азота или кислорода, окисляясь, внедряются в материал подложки.
 Такой процесс обеспечивает хорошие адгезионные и декоративные свойства покрытия.
 Технологии вакуумного напыления являются чрезвычайно энергозатратными, и во многих странах превращаются в нишевой продукт. Многие компании заменяют вакуумное напыление на более производительное и менее затратное атмосферное плазменное напыление.
 Качества и свойства материала:
 Высокая атмосферная и антикоррозионная стойкость декоративного покрытия подтверждена сертификатом соответствия ГОСТ №СХ02.1.3,0040 от 18.09.96г. и составляет 50 лет в условиях городской атмосферы;
 Цвет может быть достигнут любой, но технологический процесс отлажен под три основных цвета: имитирующий цвет золота - покрытие TiN, синий - покрытие TiO2, имитирующий цвет свежей меди - покрытие TiON;
 Отражающая способность покрытия - 60-70%;

Области применения:

 ·Кровля куполов церквей и крыш зданий;
 ·Наружная реклама (таблички, объемные и плоские буквы из нержавеющей стали);
 ·Декоративное оформление зданий и интерьеров помещений;
 ·Реставрация памятников культуры;
 ·Изготовление фрагментов сувениров и фурнитуры.
 Вакуумное напыление применяется для изделий как из чёрного металла так и других металлов, используются различные напыления, в том числе и под золото, серебро (Рис. П2.5.).

 

Рис. П2.5. Применение вакуумного напыления.

 Материалы покрытий:
 TiN - нитрид титана (золотисто-бронзовый,повышенной износостойкости);
 TiOx1Cx2Nx3 - карбонид титана
 Gr - хром (белый);
 TiOx - оксид титана (голубой, многоцветный, перламутровый);
 NiGr - нихром (светло-серый);
 ZrN - нитрид циркония (светло-золотистый);
 также алюминий, медь и т.д., по желанию заказчика.
 Цвет, твердость и другие параметры покрытия могут варьироваться в широком диапазоне материалов и оттенков.
 Важными характеристиками микросхем является быстродействие, электрические контакты, формат матрицы и т.д. Для повышения одного из самого важного параметра – быстродействие – требуется повысить проводимость электрических контактов. Наиболее простым способом сделать это является вакуумное напыление элементов через свободные маски. Золото обладает очень хорошей проводимостью, что дает возможность повысить скорость прохождения информации.

Микросхема PRAM-памяти компании Intel (Рис. П2.6.)


 Материал: Золото(серебро).

 
Рис. П2.6. Микросхема PRAM-памяти компании Intel

Подшипники скольжения центробежных насосов (Рис. П2.6.)

 Самой главной характеристикой подшипника является его ресурс. Для его повышения у подшипников скольжения разработана специальная технология детонационного напыления с нанесением нанопорошков. В процессе детонационного напыления получены наноструктурированные покрытия с содержанием монокарбида 62%. Испытания таких покрытий на трение и износ в воде показали, что они обладают пониженным коэффициентом трения, высокой нагрузкой заедания по сравнению с обычным покрытием из керамического порошка.
 Технологии: вакуумное напыление
 Отрасль: Электроника и Электротехника
 Материал: быстрозакаленные магнитные порошки БЗМП системы Nd-Fe-B.


Рис. П2.6. Подшипник скольжения

Высокоскоростное напыление

 Высокоскоростное газопламенное напыления по праву считается наиболее современной из технологий напыления. Твердосплавные покрытия, нанесенные методами высокоскоростного напыления, по всем статьям превосходят гальванические покрытия , процесс создания которых признан чрезвычайно канцерогенным .
 В начале 80-х годов появились установки высокоскоростного напыления, более простые по конструкции и основанные на классической схеме ЖРД, со скоростью газового потока более 2000 м/с. Плотность покрытий достигает 99%. В качестве наносимого материала используют порошки карбидов, металлокарбидов, сплавов на основе Ni, Cu и др. Для увеличения скорости частиц увеличивают скорость истечения продуктов сгорания путем повышения давления в камере сгорания до 1,0…1,5 МПа, а в конструкцию соплового аппарата вводят сопло Лаваля. На Рис. П2.7. представлена схема распылителя системы ВСН.


Рис. П2.6. Схема высокоскоростного порошкового распылителя:
1 - подача порошка (осевая); 2 - подача кислорода; 3 - подача топлива;
4 - подача порошка (радиальная); 5 - ствол.

Навигация:

Различают последующие периоды вакуум напылений:

  • Создание газов (паров) с элементов, образующих покрытие;
  • Транспортировка паров к подложке;
  • Конденсация пара в подложке и развитие напыления;
  • К группе способов вакуумного напыления принадлежат приведенные ниже технологические процессы, а кроме того реактивные виды данных действий.

Методы теплового напыления:

  • Испарение электрическим лучом;
  • Испарение лазерным лучом.

Испарение вакуумной дугой:

  • Сырье улетучивается в катодном пятне гальванической дуги;
  • Эпитаксия моляльным лучом.

Ионное рассеивание:

  • Первоначальное сырье распыляется бомбардировкой гетерополярным потоком и действует на подложку.

Магнетронное распыление:

  • Напыление с гетерополярным ассистированием;
  • Имплантация ионов;
  • Фокусируемый ионный пучок.

Вакуумное напыление

Применение

Вакуумное покрытие используют с целью формирования в плоскости элементов, приборов и оснащения многофункциональных покрытий - проводящих, изолирующих, абразивостойких, коррозионно-устойчивых, эрозионностойких, антифрикционных, антизадирных, барьерных и т. д. Процедура применяется с целью нанесения декоративных покрытий, к примеру, при изготовлении часов с позолотой и оправ для очков. Единственный из ключевых действий микроэлектроники, где используется с целью нанесения проводящих оболочек (металлизации). Вакуумное покрытие применяется с целью получения оптических покрытий: просветляющих, отображающих, фильтрующих.

Материалами для напыления предназначаются мишени с разных веществ, металлов (титана, алюминия, вольфрама, молибдена, железа, никеля, меди, графита, хрома), их сплавов и синтезов (Si02,Ti02,Al203). В научно-техническую сферу способен быть добавлен электрохимически динамичный метан, к примеру, ацетилен (с целью покрытий, включающих углерод), азот, воздух. Хим реакция в плоскости подложки активизируется нагревом, или ионизацией и диссоциацией газа той либо другой конфигурацией газового ряда.

С поддержкой способов вакуумного напыления обретают напыления толщиной с нескольких ангстрем вплоть до нескольких микрон, как правило в последствии нанесения напыления плоскость не требует добавочного обрабатывания.

Методы вакуумного напыления

Вакуумное покрытие — перенесение элементов напыляемого материала с источника (зоны его переведения в газовую фазу) к плоскости детали исполняется согласно прямолинейным траекториям при вакууме 10-3 Па и ниже (вакуумное улетучивание) и посредством дифузного и конвекционного перенесения в плазме при давлениях 1 Па (катодное рассеивание) и 10-1-10-3 Па (магнетронное и ионно-плазменное рассеивание). Участь любой из крупиц напыляемого элемента при соударении с поверхностью детали находится в зависимости от ее энергии, температуры плоскости и хим сродства веществ оболочки и составляющих. Атомы либо молекулы, достигнувшие плоскости, имеют все шансы или отразиться от нее, или адсорбироваться и спустя определенный период времени, покинуть ее (десорбция), или адсорбироваться и формировать в плоскости поликонденсат (уплотнение). При высочайших энергиях крупиц, высокой температуре плоскости и небольшом хим сродстве, часть отображается поверхностью. Температура плоскости детали, больше которой все частички отражаются с нее и оболочка не сформируется, именуется опасной температурой напыления вакуумного, её роль находится в зависимости от природы веществ оболочки и плоскости детали и от состояния плоскости. При весьма небольших струях испаримых частиц, в том числе и в случае если данные частички в плоскости адсорбируются, однако нечасто сталкиваются с иными подобными же частичками, они десорбируются и не могут формировать зачатков, т.е. оболочка никак не увеличивается. Опасной частотой струи испаримых элементов для переданной температуры плоскости именуется минимальная уплотненность, при которой частички конденсируются и образовывают пленку.

Метод вакуумного напыления

Вакуумно-плазменное напыление

Согласно данному способу тонкие оболочки толщиной 0,02-0,11 мкм выходят в следствии нагрева, улетучивания и осаждения элемента на подложку в изолированной камере при сокращенном давлении газа в ней. В камере с поддержкой вакуумного насоса формируется максимальное влияние остаточных газов примерно 1,2х10-3 Па.

Рабочая камера предполагает собою металлический либо стеклянный колпак с концепцией внешнего водяного остужения. Камера размещена в основной плите и формирует с ней вакуумно-непроницаемое объединение. Адгерент, в котором проводится напыление, зафиксирован на держателе. К подложке прилегает электронагреватель, раскаляющий подложку вплоть до 2500-4500 оС, с целью усовершенствования адгезии напыляемой оболочки. Теплообменник содержит в себе отопитель и ресурс напыляемого элемента. Переломная затворка закрывает течение паров с испарителя к подложке. Покрытие длится в ходе времени, когда заслонка не закрыта.

Для нагрева напыляемого элемента в основном применяется 2 вида испарителей:

  • Прямонакальный проволочный или ленточный испаритель, изготавляемый с вольфрама либо молибдена;
  • Электронно-радиальные испарители с нагревом испаримого элемента электрической бомбардировкой.

Для напыления пленок с многокомпонентых веществ используется подрывное улетучивание. При данном теплообменник разогревается вплоть до 20000 оС и посыпается порошком из смеси испаримых веществ. Подобным способом удаётся обретать композиционные покрытия.

Некоторые известные вещества с целью покрытий (к примеру, золото) обладают плохой адгезией с кремнием и иными полупроводниковыми веществами. В случае некачественной адгезии испаримого вещества к подложке, улетучивание прокладывают в 2 слоя. Вначале сверху подложки наносят слой сплава, обладающего отличной адгезией к полупроводниковой подложке, к примеру, Ni, Cr либо Ti. Далее напыляют главный пласт, у которого прилипание с подслоем ранее превосходное.

Вакуумно-плазменное напыление

Ионно-вакуумное напыление

Данный способ состоит в разбрызгивании вещества наносимого элемента, пребывающего под отрицательным потенциалом, вследствие бомбардировки ионами пассивного газа, появляющихся в ходе возбужденности перетлевающего разряда изнутри конструкции вакуумного напыления.

Материал негативно заряженного электрода распыляется перед воздействием ударяющихся о него ионизованных атомов пассивного газа. Данные пульверизированные промежуточные атомы и осаждаются сверху подложки. Основным превосходством ионно-вакуумного способа напыления представляется отсутствие потребности нагрева испарителя вплоть до высочайшей температуры.

Механизм происхождения тлеющего разряда. Разлагающийся разряд прослеживается в камерах с невысоким давлением газа меж 2-я железными электродами, на которые подается большой вольтаж вплоть до 1-4 кВ. При данном отрицательный электрод как правило заземлен. Катодом представляется мишень с распыляемого вещества. С камеры заранее откачивается воздушное пространство, далее запускается газ вплоть до давления 0,6 Па.

Тлеющий разряд приобрел собственное наименование из-за присутствия в мишени (катоде) так именуемого перетлевающего свечения. Данное сверкание обуславливается огромным падением возможности в тесном пласте объёмного заряда возле катода. К области TC прилегает сфера фарадеева тёмного пространства, переходящая в позитивный столбик, что представляется самостоятельной долею разряда, никак не подходящей с других слоев разряда.

Вблизи анода, кроме того, существует легкий пласт объёмного заряда, именуемый анодным пластом. Прочая часть межэлектродного интервала захвачена квазинейтральной плазмой. Таким способом, в камере прослеживается растровое сверкание с чередующихся тёмных и ясных полос.

Для прохождения тока меж электродами нужна стабильная эмиссия электронов катода. Данную эмиссию допускается спровоцировать по принуждению посредством нагрева катода, либо облучения его ультрафиолетовым светом. Такого рода разряд представляется несамостоятельным.

Ионно-плазменное напыление

Вакуумное напыление алюминия

В некоторых случаях, особенно при напылении пластика, применяется металлизирование алюминием, а этот металл — материал довольно легкий и никак не износоустойчивый, в данном случае необходимы некоторые особые научно-технические приемы. Пользователю следует понимать, что подобные составляющие правильнее всего оберегать от засорения сразу же по прошествии штамповки, а кроме того, вредно использовать разные смазывающие порошки и присыпки в пресс-фигурах.

Вакуумное напыление алюминия

Вакуумное напыление металлов

Металлы, испаряющиеся при температуре ниже места их плавления, допускается разогревать непосредственным прохождением тока, серебро и золото испаряют в челноках с тантала либо вольфрама. Покрытие обязано изготавливаться в камере с давлением < 10-4 мм рт.ст.

Вакуумное напыление металлов

Для происхождения независимого перетлевающего разряда следует спровоцировать эмиссию электронов с катода посредством подачи высочайшего напряжения размером 2-4 кВт меж электродами. В случае если вложенный вольтаж превосходит возможности ионизации газа в камере (как правило Ar), в таком случае, в результате конфликтов электронов с молекулами Ar, метан ионизируется с образованием положительно заряженных ионов Ar+. В следствии, в зоне катодного черного пространства появляется ограниченный пространственный разряд и поэтому, мощное гальваническое поле.

Ионы Ar+, приобретающие энергию в данной области, выбивают атомы вещества катода, в то же время инициируя эмиссию второстепенных электронов с катода. Данная эмиссия и удерживает независимый тлеющий разряд. Промежуточные атомы с вещества катода доходят подложки и осаждаются на ее плоскости.

Вакуумное ионно-плазменное напыление

Установка вакуумного напыления УВН

Конструкция оснащена важным комплексом прогрессивных устройств и приборов, которые обеспечивают оседание покрытий металлов их синтезов и PC сплавов с установленными свойствами, превосходной адгезией и высочайшей равномерностью по части площади.

Комплекс приборов и устройств, которые входят в структуру агрегата:

  • полуавтоматический (механический) блок управления вакуумной системой;
  • магнетронная распылительная концепция в стабильном токе (с 1 вплоть до 4 магнетронов);
  • концепция нагревания (с контролированием и поддержанием установленной температуры);
  • концепция очищения напыляемых продуктов в зоне тлеющего разряда;
  • концепция передвижения продуктов в вакуумной среде (простая либо планетарная карусель);
  • числовой вакуумметр;
  • концепция контролирования противодействия возрастающих пленок;
  • инверторный блок питания магнетронов (мощность вплоть до 9 кВт).

Установка вакуумного напыления

Напыление вакуумное является переносом вещества (его частиц), которое напыляют, на твердую поверхность. Оно осуществляется способом конвективного перемещения с давлением около 1 Па. При напылении каждая частица ведет себя совершенно по-разному. Некоторые способны отразиться от напыляемой поверхности, другие - приспособиться, но через какое-то время вовсе покинуть поверхность. И только небольшая часть сможет прижиться в теле опыляемого вещества, поэтому установка вакуумного напыления представляет собой достаточно сложное оборудование. Если использовать большую энергию вместе с высокой температурой, но при этом иметь маленькое химсродство материала, то большинство частиц будет отражено поверхностью.

Особенности установки вакуумного напыления

Температура, выше которой отражается весь объем частиц напыления, а также частицы, не способные взаимодействовать с веществом, именуется критической температурной точкой напыления вакуумом. Нужно внимательно следить во время осуществления напыления, чтобы отметка температуры не достигла максимально недопустимой величины.

Данная величина полностью зависима от происхождения материала, характеристики рабочей поверхности, ее состояния. Поэтому, чтобы было возможно использовать наибольшую величину температуры, когда происходит установка вакуумного напыления, необходимо хорошее состояние рабочей плоскости, тогда пленка вещества будет сделана достаточно профессионально и прочно.

Использование пленок в установке вакуумного напыления

Также существует понятие критической плотности давления. Критическая плотность давления - это минимальная величина плотности, при которой пленка адсорбируется и становится не способной принимать частицы напыления. Главная задача напыления - не достигнуть величины такой плотности, при какой вещество на которое наносят опыляемые частицы, не принимает их из-за своих плохих технических свойств.

Пленки по своей структуре разделяют по качеству напыления, техническим характеристикам и происхождению материала. Пленки бывают:

Аморфными;
- монокристаллическими;
- поликристаллическими.

Аморфные - это те пленки, которые имеют стеклообразное напыление. Монокристаллические пленки имеют более твердую поверхность и по своим функциям практически являются полупроводниками. К поликристаллическим пленкам относят сплавы, металлы и Si. Когда происходит установка вакуумного напыления, то преимущественно используются монокристаллические пленки, так как они имеют наилучшие технические характеристики и способны переносить достаточно большие нагрузки при эксплуатации.

Принцип работы установок вакуумного напыления

Для сохранения технических свойств, характеристик напыления вакуумом, после процедуры напыления используют отжиг (не нарушая вакуум) при воздействии высокой температуры, потому как такая процедура достаточно хорошо помогает сохранить полезные свойства напыляемых материалов. Температура данного отжига в несколько раз превышает температуру, при какой происходило напыление вакуумом.

Когда происходит установка вакуумного напыления, специалисты пытаются создать поверхностную структуру из одного или нескольких материалов, которые способны сделать ее гораздо лучше и эффективнее. При вакуумном напылении, в зависимости от способа нанесении пленки, используют способы периодического, полунепрерывного и непрерывного воздействия. Наиболее удобным и эффективным является непрерывный способ воздействия.

Установки вакуумного напыления включают в себя много функций. Сначала создается вакуум, затем - распыляется и испаряется пленочный материал, осуществляется транспортировка деталей, подача электропитания и осуществление контроля режима вакуумного напыления, равно как и режима свойств пленок.

Устройство установки вакуумного напыления

Как правило, все оборудование этого типа имеет схожую конструкцию, состоящую из ряда элементов. Основным рабочим органом можно назвать горизонтальную камеру, в которой и происходит напыление, благодаря размещенному в ней технологическому устройству. Обеспечить требуемый вакуум призваны газораспределительная и откачная системы. К важным рабочим узлам оборудования относятся, в том числе, источники, обеспечивающие испарение или распыление обрабатываемых материалов.

Любая установка вакуумного напыления имеет систему электропитания и блокировки рабочих элементов, отвечающих за включение/отключение оборудования. Шкаф питания располагают в стороне от оборудования. Необходимую скорость нанесения напыления на пленки, их толщину, температуру деталей и рабочую температуру, и прочие показатели регулирует предустановленная система контроля и управления. Все датчики, относящиеся к этой системе, связаны между собой единым микропроцессором.

Установки снабжаются и специальными элементами транспортировки, с помощью которых осуществляется доставка деталей в камеру или вывод из неё. Различные вспомогательные устройства установок вакуумного напыления, включающие в себя экраны, манипуляторы, заслонки, установленные внутри рабочей камеры, устройства очистки газов и прочие элементы также являются неотъемлемой частью оборудования. Обрабатываемые материалы расположены на подложках, которые вращаются вокруг барабана на специальных держателях. За один оборот барабана каждая подложка проходит зону испарения разными сторонами.



Понравилась статья? Поделитесь ей