Контакты

Пьезометрический график тепловых сетей

В тепловых сетях для характеристики гидравлического потенциала наряду с давлением р используется напор Н. Под напором понимается давление, выраженное в линейных единицах, как правило, в метрах столба жидкости, перемещаемой по трубопроводу, т.е.

где H – напор, м; р – давление теплоносителя, кгс /м2 или Н/м2; γ – удельный вес теплоносителя, кгс/м3 или Н/м3.

Аналогичную формулу можно записать и для потерь напора:

где– падение давления или располагаемый перепад давлений.

Удельная линейная потеря напора, отнесенная к единице длины трубопровода, определяется но формуле

Формула (9.2) линейного падения давления с учетом соотношения (9.3) примет вид

Формулы (9.5), (9.6) с учетом соотношения (9.7) приводятся к единой формуле

Гидравлический режим тепловой сети определяют многие факторы: геодезические отметки высот местности, высота зданий, потеря давления (напора) на участках сети и проч. Все эти факторы в определенном масштабе отражаются на пьезометрических графиках. При использовании таких графиков различают полный напор, который отсчитывается от одного общего для всей сети условного горизонтального уровня, и пьезометрический напор (пьезометрическая высота), отсчитываемый от уровня прокладки оси трубопровода в данной точке.

В качестве конкретного примера рассмотрим пьезометрический график двухтрубной сети, приведенной на рис. 9.1. На нем величинапредставляет напор, развиваемый сетевыми насосами ТЭЦ или котельной.

Исходя из условия надежной работы, к режиму давлений водяных тепловых сетей предъявляются следующие требования.

1. Избыточные давления (выше атмосферного) в обратных трубопроводах, а следовательно, и в присоединенных к сети отопительных системах не должны превышать допустимых величин (6 ати для чугунных отопительных приборов). Отметим, что в прямых трубопроводах обеспечение допустимых давлений в отопительных приборах потребителей теплоты обеспечивается с помощью дросселирующих диафрагм (шайб). Отмстим, что обратным называется трубопровод, по которому теплоноситель возвращается от потребителей к источнику теплоты.

Рис. 9.1.

– линия пьезометрических напоров прямого трубопровода; – линия пьезометрических напоров обратного трубопровода; – геодезическая отметка высоты местности; I–I – условная плоскость отсчета, имеющая геодезическую отметку высоты, равную нулю (); Н 1 пьезометрическая высота на входе в прямой трубопровод; Н 2 пьезометрическая высота на выходе из обратного трубопровода; ΔH 1 – располагаемый напор на входе в теплосеть; Н 3 – полный напор в прямом трубопроводе у потребителя, расположенного в точке С местности; ΔH 2 – пьезометрическая высота в прямом трубопроводе у потребителя в точке С; ΔH 1 пьезометрическая высота в обратном трубопроводе у потребителя в точке С; Н 4 – полный напор в обратном трубопроводе потребителя в точке С; ΔН 2 – располагаемый напор у потребителя в точке С ; Н 5 – пьезометрическая высота в конечной точке прямого трубопровода; Н 6 – пьезометрическая высота на входе в обратный трубопровод; ΔН 3 – располагаемый напор в конечной точке теплосети; L – длина трубопроводов теплосети; SS – линия статического напора

  • 2. Для предупреждения подсосов воздуха избыточные давления в тепловой сети и присоединенных отопительных системах должны быть не ниже 0,5 ати.
  • 3. Из условия обеспечения бескавитационной работы сетевых насосов давление во всасывающей камере должно быть не ниже 0,5 ати.
  • 4. Перепад давлений между прямым и обратным трубопроводами (располагаемый перепад давлений) не должен быть ниже допустимой величины (не менее 20 м). Этот перепад должен превышать потерю напора в отопительных системах потребителей. Если это условие невыполнимо (например, при отоплении высотных зданий), то на абонентских вводах устанавливаются повысительные насосные.
  • 5. Необходимо обеспечивать невскипание воды во всех трубопроводах тепловой сети и системах отопления абонентов. Ввиду того что температура воды в прямом трубопроводе может превышать 100°С, при некотором давлении, большим атмосферного, может произойти ее вскипание. В связи с этим на пьезометрический график наносится линия статического давления SS. Это линия, характеризующая давление вскипания жидкости в прямом трубопроводе при заданной температуре теплоносителя как при его движении, так и в неподвижном состоянии. Следовательно, давление в прямом трубопроводе не должно быть ниже статического давления. Так как температура воды в обратном трубопроводе всегда меньше 100°С, по условиям вскипания жидкости давление здесь не должно быть ниже атмосферного. В практике эксплуатации тепловых сетей для обеспечения невскипания жидкости и предупреждения подсосов воздуха избыточное давление в обратном трубопроводе не должно быть ниже 0,5 ати.

При отсутствии повысительных и понизительных насосных внутри теплосети пьезометрическая линия прямого трубопровода всегда нисходящая. Наклон этой линии к плоскости отсчета I–I определяется потерями напора по длине трубы, которые, в свою очередь, зависят от рода теплоносителя, его расхода, шероховатости стенок трубопровода и других факторов. Пьезометрическая линия обратного трубопровода от точки В до точки В 2 всегда восходящая. Наклон этой линии зависит от тех же факторов, которыми определяется наклон пьезометрической линии прямого трубопровода.

При малых расходах теплоносителя в коротких трубопроводах большого диаметра потери напора по их длине будут незначительны. Пьезометрические линии прямого и обратного трубопроводов в этом случае будут представлять линии, практически параллельные условной плоскости отсчета I–I.

Напор H 2 в точке В задается подпиточными насосами станции (котельной). Создаваемый ими напор является базовым. Он не изменяется при любых изменениях параметров внутри сети, в том числе и при изменении наклона пьезометрической линии ВВ 2 обратного трубопровода, величина которого определяется факторами, отмеченными выше.

При проектировании и эксплуатации разветвленных тепловых сетей, для учета взаимного влияния профиля района, высот присоединяемых зданий, потерь давления в тепловой сети и абонентских установках, используется график. По пьезометрическому графику легко определяется давление и располагаемый перепад давлений в любой точке тепловой сети.

На основании пьезометрического графика выбирается схема присоединения абонентских установок, подбираются повысительные насосы, подпиточные насосы и автоматические устройства.

График давления разрабатывается для состояний покоя системы (гидростатический режим) и динамического режима.

Динамический режим характеризуется линией потерь напора в подающем и обратном трубопроводе, на основании гидравлического расчета сети, и определяется работой сетевых насосов.

Гидростатический режим поддерживается подпиточными насосами в период отключения сетевых насосов.

К водяным тепловым сетям присоединены абоненты, имеющие различные тепловые нагрузки. Они могут быть расположены на различных геодезических отметках и иметь различную высоту. Системы отопления абонентов могут быть рассчитаны на работу с различными температурами воды. В этих случаях необходимо заранее определять давления или напоры в любой точке тепловой сети.

Для этого строится пьезометрический график или график напоров тепловой сети, на котором в определенном масштабе нанесены рельеф местности, высота присоединенных зданий, напор в тепловой сети; по нему легко определить напор (давление) и располагаемый напор (перепад давлений) в любой точке сети и абонентских системах.

Кроме определения напоров в любой точке сети и по пьезометрическому графику можно проверить соответствие предельных давлений в тепловой сети прочности элементов систем теплоснабжения. По графику напоров выбираются схемы присоединения потребителей к тепловой сети и подбирается оборудование тепловых сетей (сетевые и подпиточныенасосы, автоматические регуляторы давления и т. п.). График стоится при двух режимах работы тепловых сетей -- статическом и динамическом.

Статический режим характеризуется давлениями в сети при неработающих сетевых, но включенных подпиточных насосах. Циркуляция воды в сети отсутствует. При этом подпиточные насосы должны развивать напор, обеспечивающий невскипаемость воды в тепловой сети.

Динамический режим характеризуется давлениями, возникающими в тепловой сети и в системах потребителей теплоты при работающих сетевых насосах, обеспечивающих циркуляцию воды в системе.

Пьезометрический график разрабатывается для основной магистрали теплосети и протяженных ответвлений. Он может быть построен только после выполнения гидравлического расчета трубопроводов - по рассчитанным падениям давления на участках тепловой сети.

График строится по двум осям - вертикальной и горизонтальной. На вертикальной оси откладывают напоры в любой точке сети, напоры насосов, профиль сети, высоты отопительных систем в метрах, на горизонтальной -длины участков тепловой сети.

При построении условно принимают, что ось трубопроводов и геодезические отметки установки насосов и нагревательных приборов в первом этаже зданий совпадают с отметкой земли. Высшее положение воды в отопительных системах совпадает с верхней отметкой здания.

Полный напор в нагнетательном патрубке сетевого насоса соответствует отрезку Н н. Полный напор на обратном коллекторе источника теплоснабжения соответствует отрезку Н o .

Напор, развиваемый сетевым насосом, соответствует вертикальному отрезку Н С =Н H -Н 0 , потери напора в теплоподготовительной установке источника теплоснабжения (в сетевых подогревателях или водогрейных котлах) соответствуют вертикальному отрезку Н Т. Таким образом, напор на подающем коллекторе источника теплоснабжения соответствует вертикальному отрезку Н ит =Н с -.

Методика построения графика:

  • 1) Строится магистраль, условно ее отметка совпадает с отметкой земли;
  • 2) На профиле трассы в принятом масштабе вычерчиваются высоты присоединения зданий;
  • 3) Строится линия статического напора, из условий заполнения водой отопительных установок и создания в их верхних точках избыточного давления (запас напора 5 м выше самого высокого здания);
  • 4) Пьезометрическое давление в обратном трубопроводе тепловой сети не должно быть меньше 5 м в. ст. во избежание образования вакуума и подсоса воздуха.

График выполняется на миллиметровке формата 297 х 420. Для построения применять следующие масштабы:

Горизонтальный - 1:1000, 1:500; вертикальный - 1см - 5м.

Определить располагаемый напор для каждой УТ (тепловой камеры):

Нрасп. = Нподающ.тр. - Нобратн.тр.

5.5. Пьезометрический график

При проектировании и эксплуатации разветвленных тепловых сетей широко используется пьезометрический график, на котором в конкретном масштабе нанесены рельеф местности, высота присоединенных зданий, напор в сети; по нему легко определить напор () и располагаемый напор (перепад давлений) в любой точке сети и абонентских системах.

На рис. 5.5 приведены пьезометрический график двухтрубной водяной системы теплоснабжения и принципиальная схема системы. За горизонтальную плоскость отсчета напоров принят уровень I - I , имеющий горизонтальную отметку 0; , график напоров подающей линии сети; , – график напоров обратной линии сети; – полный напор в обратном коллекторе источника теплоснабжения напор, развиваемый сетевым ом 1; Н ст полный напор, развиваемый подпиточным ом, или, что то же, полный статический напор тепловой сети; Н к полный напор в точке К на нагнетательном патрубке а 1; потеря напора сетевой воды в теплоподготовительной установке III ;

Н n 1 – полный напор в подающем коллекторе источника теплоснабжения: . Располагаемый напор сетевой воды на коллекторах . Напор в любой точке тепловой сети, например в точке 3, обозначается следующим образом: – полный напор в точке 3 подающей линии сети; полный напор в точке 3 обратной линии сети.

Если геодезическая высота оси трубопровода над плоскостью отсчета в этой точке сети равна Z 3 , то пьезометрический напор в точке 3 подающей линии , а пьезометрический напор в обратной линии . Располагаемый напор в точке 3 тепловой сети равен разности пьезометрических напоров подающей и обратной линий тепловой сети или, что одно и то же, разно сти полных напоров .

Располагаемый напор в тепловой сети в узле присоединения абонента Д:

Потеря напора в обратной линии на этом участке тепловой сети

При гидравлическом расчете паровых сетей профиль паропровода можно не учитывать вследствие малой плотности пара. Падение давления на участке паропровода принимается равным разности давлений в концевых точках участка. Правильное определение потери напора, или падения давления в трубопроводах, имеет первостепенное значение для выбора их диаметров и организации надежного гидравлического режима сети.

Для предупреждения ошибочных решений следует до проведения гидравлического расчета водяной тепловой сети наметить возможный уровень статических напоров, а также линии предельно допустимых максимальных и минимальных гидродинамических напоров в системе и, ориентируясь по ним, выбрать характер пьезометрического графика из условия, что при любом ожидаемом режиме работы напоры в любой точке системы теплоснабжения не выходят за допустимые пределы. На основе технико-экономического расчета следует лишь уточнить значения потерь напора, не выходя за пределы, намеченные по пьезометрическому графику. Такой порядок проектирования позволяет учесть технические и экономические особенности проектируемого объекта.

Основные требования к режиму давлений водяных тепловых сетей из условия надежности работы системы теплоснабжения сводятся к следующему:

1) не разрешается превышение допустимых давлений в оборудовании источника, тепловой сети и абонентских установок. Допустимое избыточное (сверх атмосферного) в стальных трубопроводах и арматуре тепловых сетей зависит от применяемого сортамента труб и в большинстве случаев составляет 1,6–2,5 МПа;

2) обеспечение избыточного (сверх атмосферного) давления во всех элементах системы теплоснабжения для предупреждения кавитации ов (сетевых, подпиточных, смесительных) и защиты системы теплоснабжения от подсоса воздуха. Невыполнение этого требования приводит к коррозии оборудования и нарушению циркуляции воды. В качестве минимального значения избыточного давления принимают 0,05 МПа (5 м вод. ст.);

3) обеспечение не вскипания сетевой воды при гидродинамическом режиме системы теплоснабжения, т.е. при циркуляции воды в системе.

Во всех точках системы теплоснабжения должно поддерживаться , превышающее насыщенного водяного пара при максимальной температуре сетевой воды в системе.

К водяным тепловым сетям присоединены отопительные системы зданий различного назначения, калориферные установки вентиляционных систем, системы горячего водоснабжения. Здания могут быть расположены в различных точках рельефа местности, отличающихся геодезическими отметками, и иметь различную высоту. Системы отопления зданий могут быть рассчитаны на работу с различными температурами воды. В этих случаях важно заранее определять давление и напор в любой точке сети.

График напоров (пьезометрический график) строится для определений давления в любой точке сети и систем потребителей теплоты с целью проверки соответствия предельных давлений прочности элементов систем теплоснабжения. По графику напоров выбираются схемы присоединений потребителей к тепловой сети, и подбирается оборудование тепловых сетей. График строится при двух режимах работы системы теплоснабжения - статическом и динамическом. Статический режим характеризуется давлением в сети при неработающих сетевых, но включенных подпиточных насосах. Динамический режим характеризует давления, возникающие в сети и в системах теплопотребителей при работающей системе теплоснабжения, работающих сетевых насосах, при движении теплоносителя.

Графики разрабатываются для основной магистрали тепловой сети и протяженных ответвлений.

Пьезометрический график (график напоров) может быть построен только после выполнения гидравлического расчета трубопроводов - по рассчитанным падениям давления на участках сети.

График строях по двум осям - вертикальной и горизонтальной. На вертикальной оси откладывают напоры в любой точке сети, напоры насосов, профиль сети, высоты отопительных систем в метрах. Пример построения графика показан на рис.6 приложения 9. По горизонтальной оси нанесены длины отдельных участков сети, показано взаимное расположение по горизонтали характерных потребителей теплоты.

За нулевую отметку нужно принимать место установки сетевых насосов. Предварительно, напор на всасывающей стороне сетевых насосов Н ВС принимают равным 10-15 м.

По известным горизонталям на генплане на график нанести профиль местности для магистрали и ответвлений. Показать высоты зданий и линию статического давления; показать напоры сетевого и подпиточного насосов. Напоры наиболее удаленного потребителя принимать не менее 20-25 м вод.ст. Потеря напора в источнике тепла принимается равной 20-25 м вод.ст.

Построенный пьезометрический график должен удовлетворять следующим техническим условиям:

а) давление в местных системах отопления зданий должно быть не более 60 м вод.ст. Если в нескольких зданиях это давление получается более 60 м, то их местные системы присоединяются по независимой схеме;


б) пьезометрическое давление в обратной магистрали должно быть не менее 5 м для предупреждения подсоса воздуха в систему;

в) давление на во всасывающей линии сетевых насосов должно быть не менее 5 м;

г) давление в обратной магистрали как в статическом, так и в динамическом (при работе сетевых насосов) режимах не должно быть ниже статической высоты зданий.

Если для некоторых зданий этого достигнуть не удается, то после системы отопления зданий необходимо установить регулятор «подпора»;

д) пьезометрическое давление в любой точке подающей магистрали должно быть выше давления насыщения при данной температуре теплоносителя (условие «невскипания»). Например, при температуре воды в сети 100°С падающий пьезометр должен отстоять от уровня земли на расстоянии более 38 м;

е) полный напор за сетевыми насосами, отсчитываемый на пьезометре от нулевой отметки, должен быть ниже давления, допускаемого по условиям прочности сетевых подогревателей (140-150 м).

При теплоснабжении от водогрейных котлов эта величина может доходить до 250 м.

Выбор схем присоединения систем отопления к тепловой сети производят, исходя из графика.

При зависимых схемах систем отопления с элеваторным смешением необходимо, что бы пьезометрический напор в обратной магистрали при динамическом и статическом режимах не превышал 60 м, а располагаемый на вводе в здание был не менее 15 м (в расчетах принимать 20-25м) для поддержания требуемого коэффициента смещения элеватора.

Если при данных условиях располагаемый напор на вводе в здание менее 15 м, в качестве смесительного устройства используют центробежный насос, установленный на перемычке.

Для систем отопления, у которых напор в обратной магистрали ввода теплосети и динамическом режиме превышает допустимые значения, требуется установка насоса на обратной линии ввода.

Если гидродинамический пьезометрический напор в обратной магистрали меньше требуемого по условию заполнения отопительной установки сетевой водой, то есть меньше высоты отопительной установки, то на обратной линии абонентского ввода устанавливают регулятор давления «до себя» (РДДС).

При присоединении систем отопления по независимой схеме напор в обратной магистрали ввода теплосети гидродинамическом и статическом режимах не должен превышать допустимого значения(100м) из условия механической прочности водоподогревателей.

Результаты по выбору схем присоединения систем отопления потребителей к тепловой сети сводим в таблицу7.1 аналогично приведенным примерам.

Таблица 7.1 – Выбор схем присоединения систем отопления

Для предварительного построе­ния пьезометрического графика мо­жет быть рекомендован следующий метод (рис. 2).

1) Принимая за нуль отметку са­мой низкой точки района, строится профиль тепловой сети.

2) На профиле вычерчиваются в масштабе высоты присоединяемых зданий.

3) Выбирается и наносится на график уровень S-S статического давления, исходя из условия обес­печения невскипания в самой высо­кой точке района (в данном случае на отметке ▼ 20) и непревышения допустимого давления в местной си­стеме в самой низкой точке района (в данном случае на отметке ▼0).

Рис. 2. Построение пьезометрического графика водяной сети.

4) Намечается предельное, наи­более крутое положение пьезометри­ческого графика обратной магистра­ли KL, исходя из удовлетворения следующих двух требований:

а) пьезометрический напор в об­ратной магистрали не должен пре­вышать 50 м, что позволяет присоединить все отопительные системы непосредственно к тепловой сети, не прибегая к установке на вводах водоводяных подогревателей;

б) пьезометрический напор в об­ратной магистрали не должен быть ниже 5 м во избежание вакуума.

Такой линией в нашем случае яв­ляется прямая KL.

Удельная потеря напора в обрат­ной магистрали тепловой сети, зада­ваемая для гидравлического расче­та, не должна превышать уклона линии KL.

На основании технико-экономи­ческих расчетов в качестве пьезо­метрической линии обратной маги­страли может быть выбрана любая линия, уклон которой меньше укло­на пьезометрической линии KL и по­ложение которой удовлетворяет из­ложенным выше требованиям: та­кой линией может, например, явить­ся линия MN.

При выборе положения пьезо­метрического графика подающей магистрали исходят из следующих условий:

1. Ни в одной из точек тепловой сети напор в подающей магистрали не должен быть ниже статического напора, т. е. пьезометрический гра­фик подающей магистрали не дол­жен пересекать линию статического давления S - S. Это условие обеспе­чивает невскипание воды в подаю­щей линии.

2. Желательно, чтобы распола­гаемый напор на вводе у потребителей, т. е. разность напоров подающей и обратной линии в точке присоеди­нения потребителя (например, величина ДН у абонента D) был равен или несколько превышал потерю напора в абонентской системе, включая оборудование ввода. Если это усло­вие не удовлетворяется, то в сети или на абонентских вводах прихо­дится устанавливать насосные под­станции. Это усложняет эксплуата­цию, хотя сооружение насосных подстанций в некоторых случаях окупается экономией электроэнер­гии на перекачку теплоносителя благодаря возможности снижения при этом располагаемого напора на сетевых насосах ТЭЦ.



Уклон пьезометрического графи­ка подающей магистрали выбирает­ся на основании технико-экономиче­ских расчетов. Пьезометрическим графиком подающей магистрали мо­жет, например, явиться линия PR, если ее уклон соответствует эконо­мической удельной потере напора. Пьезометрический график дает на­глядное представление о распределении давлений по сети, что весьма важно при выборе схемы присоеди­нения абонентов.

Особенное значение это имеет для выбора схемы присоединения отопительных установок к тепловой сети, поскольку допустимое давле­ние в этих установках может изменяться в сравнительно узких пре­делах.

Пьезометрические графики, при­веденные на рис. 1-2, отно­сятся к двухтрубной водяной сети.

На рис. 3 приведены пьезо­метрические графики однотрубных сетей.

Рис. 3. Пьезометрические графики однотрубных сетей.

а- линии горячего водоснабжения: б - конденсатопровода.

На рис.3,а показан пьезо­метрический график сети горячего водоснабжения. По этой сети вода подается от станции к абонентам. Пьезометрический график имеет ук­лон в сторону движения воды. На­верху тонкой линией показана схе­ма сети. Ниже жирной линией по­казан пьезометрический график.

Н 1 -пьезометрический напор на станции;

Н 2 и Н 3 -пьезометрические на­поры в точках 2 и 3 сети;

Н 4 , Н 5 , Н 6 - пьезометрические напоры на абонентских вводах.

Пьезометрические напоры на абонентских вводах должны превы­шать высоту абонентских систем.

На рис. 3,б показан пьезомет­рический график конденсатной сети. По этой сети конденсат откачивает­ся от абонентов на станцию. Навер­ху тонкой линией показана схема, ниже - жирной линией - пьезомет­рический график. Пьезометрический график имеет уклон от абонентов к станции. H 1 -пьезометрический напор в конденсатопроводе на стан­ции; Н 2 и Н 3 - пьезометрические напоры в точках 2 и 3 конденсатной линии; Н 4 , Н 5 и Н 6 - пьезометриче­ские напоры в кондансатной линии у абонентов.

Эти напоры создаются конденсатными баками или конденсатными насосами, установленными у абонентов.



Понравилась статья? Поделитесь ей