Контакты

Катушка теслы своими руками из твс. Как мы делали самую большую катушку тесла в россии. Неизвестные эффекты трансформатора Теслы

Трансформатор Тесла - устройство, изобретённое Николой Теслой и носящее его имя. Является резонансным трансформатором, производящим высокое напряжение высокой частоты. Прибор был заявлен патентом США от 22 сентября 1896 года, как «Аппарат для производства электрических токов высокой частоты и потенциала».

Простейший трансформатор Тесла состоит из двух катушек - первичной и вторичной, а также разрядника, конденсатора, тороида(используется не всегда) и терминала (на схеме показан как «выход»). Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная около 1000 витков провода меньшего диаметра. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от обычных трансформаторов, здесь нет ферромагнитногосердечника. Таким образом взаимоиндукция между двумя катушками гораздо меньше, чем у трансформаторов с ферромагнитным сердечником. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент - разрядник. Разрядник, в простейшем случае обыкновенный газовый, представляет собой два массивных электрода с регулируемым зазором. Электроды должны быть устойчивы к протеканию больших токов через электрическую дугу между ними и иметь хорошее охлаждение. Вторичная катушка также образует колебательный контур, где роль конденсатора главным образом выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя. Терминал может быть выполнен в виде диска, заточенного штыря или сферы и предназначен для получения предсказуемых искровых разрядов большой длины. Таким образом, трансформатор Тесла представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов. Для полноценной работы трансформатора эти два колебательных контура должны быть настроены на одну резонансную частоту. Обычно в процессе настройки подстраивают первичный контур под частоту вторичного путём изменения ёмкости конденсатора и числа витков первичной обмотки до получения максимального напряжения на выходе трансформатора.

1. СХЕМА ТРАНСФОРМАТОРА ТЕСЛА

Как Вы видите, в данной схеме минимум элементов, что нисколько не облегчает нашу задачу. Ведь чтобы она работала необходимо её не только собрать, но и настроить! Начнём по-порядку: МОТЫ: такой трансформатор есть в микроволновке. Представляет собой обычный силовой трансформатор с одной лишь разницей, что его сердечник работает в режиме, близком к насыщению. Это означает, что несмотря на малые размеры, он имеет мощность до 1,5 кВт. Однако, есть и отрицательные стороны у такого режима работы. Это и большой ток холостого хода, около 2-4 А, и сильный нагрев даже без нагрузки, про нагрев с нагрузкой я молчу. Обычное выходное напряжение у МОТа - 2000-2200 вольт при силе тока 500-850 мА. У всех МОТов «первичка» намотана внизу, «вторичка» сверху. Делается это для хорошей изоляции обмоток. На «вторичке», а иногда и на «первичке» намотана накальная обмотка магнетрона, около 3,6 вольт. Причём между обмотками можно заметить две металлические перемычки. Это - магнитные шунты. Основное их назначение - замкнуть на себя часть создаваемого «первичкой» магнитного потока и таким образом ограничить магнитный поток через «вторичку» и её выходной ток на некотором уровне. Делается это из-за того, что при отсутствии шунтов при коротком замыкании во «вторичке» (при дуге) ток через «первичку» многократно возрастает и ограничивается лишь её сопротивлением, которое и так очень мало. Таким образом, шунты не дают трансу быстро перегреться при подключенной нагрузке. Хотя МОТ и греется, но в печке ставят хороший вентилятор для его охлаждения и он не сдыхает. Если же шунты удалить, то мощность, отдаваемая трансом, повышается, но перегрев происходит гораздо быстрее. Шунты у импортных МОТов обычно хорошо залиты эпоксидкой и их не так просто удалить. Но сделать это всё-же желательно, уменьшится просадка под нагрузкой. Для уменьшения нагрева могу посоветовать засунуть МОТ в масло. Дилетантов прошу отказаться от этой работы. Опасно Высокое напряжение. Смертельно для жизни. Напряжение хотя и мало по сравнению со строчником, но сила тока, в сто раз большая, чем безопасный предел 10мА сделает твои шансы остаться живым практически равными нулю. Могу огорчить некоторых людей, сообщив о том, что МОТ, хотя и идеальный источник питания для катушек тесла (малогабаритный, мощный, не сдыхает от ВЧ как NST), но его цена колеблется от 600 до 1500 и выше рублей. К тому же даже если вы имеете такие деньги, вам придётся изрядно побегать по радиорынкам и магазинам в его поисках. Лично я так и не нашёл импортного МОТа, не нового, не подержанного. Но я нашёл МОТ от советской микроволновки «Электроника». Он обладает гораздо большими размерами, чем импортные и работает как обычный транс. Называется от ТВ-11-3-220-50. Его примерные параметры: мощность около 1,5 кВт, выходное напряжение ~2200 вольт, сила тока 800 мА. Приличные параметры. Причём на нём, кроме первички, вторички и накальной присутствует ещё обмотка на 12 В, как раз для питания кулера на искровик теслы. Автор нашей Теслы использовал вот такие моты:

КАПЫ:Подразумеваются высоковольтные керамические конденсаторы (серий К15У1, К15У2, ТГК, КТК, К15-11, К15-14 -для установок высокой частоты!) Самое сложное - это найти их. Представляем фоторобот:

Фильтр от ВЧ: соответственно две катушки, выпоняющие функцию фильтров от напряжения высокой частоты. В каждой 140 витков медного лакированного провода 0.5 мм в диаметре. Очень хорошо различимы на этом рисунке:

Искровик: Искровик нужен для коммутации питания и возбуждения колебаний в контуре. Если в схеме не будет искровика, то питание будет, а колебаний нет. А еще блок питания начинает сифонить через первичку - а это короткое замыкание! Пока искровик не замкнут - капы заряжаются. Как только замыкается - начинаются колебания. Поэтому ставят балласт в виде дроселей - когда искровик замкнут дросель мешает течь току от блока питания заряжается сам, а потом, когда разрядник разомкнется, заряжает капы с удвоенной злостью. Да, если бы в розетке было 200 кгц, разрядник естественно был бы не нужен.

Знаменитый изобретатель Никола Тесла имеет немало заслуг перед наукой и техникой, но только одно изобретение носит его имя. Это резонансный трансформатор, известный также как« катушка Теслы».

Трансформатор Теслы состоит из первичной и вторичной обмоток, схемы, обеспечивающей питание первичной обмотки на резонансной частоте вторичной, и, опционально, дополнительной емкости на высоковольтном выходе вторичной обмотки. Острие, укрепленное на дополнительной емкости, повышает напряженность электрического поля, облегчая пробой воздуха. Дополнительная емкость снижает рабочую частоту, уменьшая нагрузку на транзисторы, и, по некоторым данным, повышает длину разрядов. В качестве каркаса вторичной обмотки используется кусок канализационной ПВХ-трубы. Вторичная обмотка состоит примерно из 810 витков эмалированного провода диаметром 0,45 мм. Первичная обмотка состоит из восьми витков провода сечением 6 мм2. Схема питания основана на принципе автоколебаний и построена на силовых транзисторах.

Суть изобретения Теслы проста. Если питать трансформатор током с частотой, равной резонансной для его вторичной обмотки, напряжение на выходе возрастает в десятки и даже сотни раз. Фактически оно ограничено электрической прочностью окружающего воздуха (или иной среды) и самого трансформатора, а также потерями на излучение радиоволн. Наиболее известна катушка в области шоу-бизнеса: она способна метать молнии!

Форма и содержание

Трансформатор выглядит весьма необычно — он словно специально сконструирован для шоу-бизнеса. Вместо привычного массивного железного сердечника с толстыми обмотками — длинная полая труба из диэлектрика, на которую провод намотан всего в один слой. Такой странный вид вызван необходимостью обеспечить максимальную электрическую прочность конструкции.

Кроме необычного внешнего вида, трансформатор Теслы имеет еще одну особенность: в нем обязательно есть некая система, создающая в первичной обмотке ток именно на резонансной частоте вторичной. Сам Тесла использовал так называемую искровую схему (SGTC, Spark Gap Tesla Coil). Ее принцип заключается в зарядке конденсатора от источника питания с последующим подключением его к первичной обмотке. Вместе они создают колебательный контур.

Емкость конденсатора и индуктивность обмотки подбираются так, чтобы частота колебаний в этом контуре совпадала с необходимой. Коммутация осуществляется с помощью искрового промежутка: как только напряжение на конденсаторе достигает определенного значения, в промежутке возникает искра, замыкающая контур. Часто можно увидеть утверждения, что «искра содержит полный спектр частот, так что там всегда есть и резонансная, за счет чего и работает трансформатор». Но это не так — без правильного подбора емкости и индуктивности действительно высокого напряжения на выходе не получить.

Решив сделать свой трансформатор Теслы, мы остановились на более прогрессивной схеме — транзисторной. Транзисторные генераторы потенциально позволяют получить любую форму и частоту сигнала в первичной обмотке.

Выбранная нами схема состоит из микросхемы драйвера силовых транзисторов, маленького трансформатора для развязки этого драйвера от питающего напряжения 220 В и полумоста из двух силовых транзисторов и двух пленочных конденсаторов. Трансформатор мотается на кольце из феррита с рабочей частотой не менее 500 кГц, на нем делается три обмотки по 10−15 витков провода. Очень важно подключить транзисторы к обмоткам трансформатора так, чтобы они работали в противофазе: когда один открыт, другой закрыт.

Нужная частота возникает за счет обратной связи со вторичной обмоткой (схема основана на автоколебаниях). Обратная связь может осуществляться двумя способами: с помощью или трансформатора тока из 50−80 витков провода на таком же ферритовом кольце, как и разделительный трансформатор, через которое проходит провод заземления нижней части вторичной обмотки, или… просто кусочка проволоки, которая выполняет роль антенны, улавливающей испускаемые вторичной обмоткой радиоволны.

Мотаем на ус

В качестве каркаса первичной обмотки мы взяли канализационную трубу из ПВХ диаметром 9 см и длиной 50 см. Для намотки используем эмалированный медный провод диаметром 0,45 мм. Каркас и катушку обмоточного провода размещаем на двух параллельных осях. В качестве оси каркаса выступал кусок ПВХ-трубы меньшего диаметра, а роль оси катушки с проводом выполнила завалявшаяся в редакции стрела от лука.

Существуют три варианта первичной обмотки: плоская спираль, короткая винтовая и коническая обмотка. Первая обеспечивает максимальную электрическую прочность, но в ущерб силе индуктивной связи. Вторая, напротив, создает наилучшую связь, но чем она выше — тем больше шансов, что произойдет пробой между нею и вторичной обмоткой. Коническая обмотка — промежуточный вариант, позволяющий получить наилучший баланс между индуктивной связью и электрической прочностью. Рекордные напряжения мы получить не рассчитывали, так что выбор пал на винтовую обмотку: она позволяет добиться максимального КПД и проста в изготовлении.

В качестве проводника взяли провод питания аудиоаппаратуры с сечением 6 мм², восемь витков которого намотали на отрезок ПВХ-трубы большего диаметра, чем у каркаса вторичной обмотки, и закрепили обычной изолентой. Такой вариант нельзя считать идеальным, ведь ток высокой частоты течет лишь по поверхности проводников (скин-эффект), так что правильнее делать первичную обмотку из медной трубы. Но наш способ прост в изготовлении и при не слишком больших мощностях вполне работает.

Управление

Для обратной связи мы изначально планировали использовать трансформатор тока. Но он оказался неэффективным при малых мощностях катушки. А в случае антенны сложнее обеспечить первоначальный импульс, который запустит колебания (в случае трансформатора через его кольцо можно пропустить еще один провод, на который на долю секунды замыкать обычную батарейку). В итоге у нас получилась смешанная система: один выход трансформатора был подключен к входу микросхемы, а провод второго не был ни к чему подключен и служил антенной.

Короткие замыкания, пробитие транзисторов и прочие неприятности изначально предполагались очень даже возможными, так что дополнительно был изготовлен пульт управления с амперметром переменного тока на 10 А, автоматическим предохранителем на 10 А и парой «неонок»: одна показывает, есть ли напряжение на входе в пульт, а другая — идет ли ток к катушке. Такой пульт позволяет удобно включать и выключать катушку, отслеживать основные параметры, а также дает возможность многократно снизить частоту походов к щитку для включения «выбитых» автоматов.

Последняя опциональная деталь трансформатора — дополнительная емкость в виде проводящего шара или тора на высоковольтном выходе вторичной обмотки. Во многих статьях можно прочесть, что она способна существенно удлинить разряд (кстати, это широкое поле для экспериментов). Мы сделали такую емкость на 7 пФ, собрав вместе две стальные чашки-полусферы (из магазина IKEA).

Сборка

Когда все компоненты изготовлены, конечная сборка трансформатора не составляет никакой проблемы. Единственная тонкость — заземление нижнего конца вторичной обмотки. Увы, не во всех отечественных домах есть розетки с отдельными контактами земли. А там, где есть, эти контакты не всегда реально подключены (проверить это можно с помощью мультиметра: между контактом и проводом фазы должно быть около 220 В, а между ним и нулевым проводом — почти нуль).

Если у вас такие розетки есть (у нас в редакции нашлись), то заземлять нужно именно с их помощью, используя для подключения катушки соответствующую вилку. Часто советуют заземлять на батарею центрального отопления, но это категорически не рекомендуется, поскольку в некоторых случаях может привести к тому, что батареи в доме будут бить током ни о чем не подозревающих соседей.

Но вот наступает ответственный момент включения… И сразу же появляется первая жертва молнии — транзистор схемы питания. После замены выясняется, что схема в принципе вполне работоспособна, хотя и на небольших мощностях (200−500 Вт). При выходе на проектную мощность (порядка 1−2 кВт) транзисторы взрываются с эффектной вспышкой. И хотя эти взрывы не представляют опасности, режим «секунда работы — 15 минут замены транзистора» не является удовлетворительным. Тем не менее с помощью этого трансформатора вполне можно почувствовать себя в роли Зевса-громовержца.

Благородные цели

Хотя в наше время трансформатор Теслы, по крайней мере в его исходном виде, чаще всего находит применение в разнообразных шоу, сам Никола Тесла создавал его для куда более важных целей. Трансформатор является мощным источником радиоволн с частотой от сотни килогерц до нескольких мегагерц. На основе мощных трансформаторов Теслы планировалось создание системы радиовещания, беспроводного телеграфа и беспроводной телефонии.

Но наиболее грандиозный проект Теслы, связанный с использованием его трансформатора, — создание глобальной системы беспроводного энергоснабжения. Как он считал, достаточно мощный трансформатор или система трансформаторов сможет в глобальном масштабе менять заряд Земли и верхних слоев атмосферы.

В такой ситуации установленный в любой точке планеты трансформатор, имеющий такую же резонансную частоту, как и передающий, будет источником тока, и линии электропередач станут не нужны.

Именно стремление создать систему беспроводной передачи энергии погубило знаменитый проект Wardenclyff. Инвесторы были заинтересованы в появлении только окупаемой системы связи. А передатчик энергии, которую мог бы неконтролируемо принимать любой желающий по всему миру, напротив, грозил убытками электрическим компаниям и производителям проводов. А один из основных инвесторов был акционером Ниагарской ГЭС и заводов по производству меди…

Никола Тесла по истине гениальный изобретатель всех времен. Он практически создал весь современный мир. Без его изобретений мы бы долго не знали о электрическом токе того, что знаем сейчас.
Одним из ярких и удивительных изобретений Тесла является его катушка или трансформатор. Который как нельзя лучше демонстрирует передачу энергии на расстоянии.
Чтобы провести эксперименты, порадовать и удивить друзей, вы дома можете собрать простой, но вполне работающий прототип. Для этого не понадобиться большое количество дефицитных деталей и много времени.

Для изготовления Катушки Тесла вам понадобиться:

  • Банка от CD дисков.
  • Кусок полипропиленовой трубки.
  • Переключатель.
  • Транзистор 2n2222 (можно отечественные типа кт815, кт817, кт805 и т.п.).
  • Резистор 20-60 КОм.
  • Провода.
  • Проволока 0,08-0,3 мм.
  • Батарейка 9 В или другой источник 6-15В.

Инструменты: нож канцелярский, пистолет с горячим клеем, шило, ножницы и может другой инструмент, который есть почти в каждом доме.

Изготовление катушки Тесла своими руками

Первым делом нам необходимо отрезать кусок полипропиленовой трубки длинной примерно 12-20 сантиметров. Диаметр трубы любой, берите какой есть под рукой.



Возьмем тонкую проволоку. Зафиксируем изолентой один конец и начинаем наматывать плотно, виток к витку, пока не закроем всю трубку, оставив 1 сантиметров от края. Как намотаем зафиксируем второй конец проволоки тоже изолентой. Можно горячим клеем, но в этом случае придется немного подождать.



Берем футляр от дисков и делаем три отверстия под проволоку. Смотрите фото.



Вырезаем паз под выключатель с помощью которого будем включать и выключать нашу катушку Тесла.


Чтобы смотрелось получше я покрасил коробку аэрозольной краской.


Вставляем переключатель. Приклеиваем катушку, намотанную на трубке, горячим клеем в середину банки.


Нижний конец проволоки пропускаем через отверстие.


Берем провод потолще. Из него сделаем силовую катушку.


Обматываем вокруг трубки с проволокой. Делаем не вплотную, на некотором расстоянии. Катушка 4-5 витком.


Оба конца, получившейся катушки, пропускаем в отверстия.
Далее собираем схему:


Транзистор я приклеил на горячий глей к крышке от газировки, которую предварительно приклеил так же на горячий клей. Да вообще все элементы, включая провода и батарейку фиксируем этим клеем.


Далее делаем электрод. Берем мячик от пинг-понга, гольфа или другой небольшой шарик и оборачиваем его алюминиевой фольгой. Излишки отрезаем ножницами.

В нашем мире постоянно происходят удивительные вещи. Вот и великий изобретатель Никола Тесла в свое время изобрел чудо техники — катушку Тесла. Это трансформатор, позволяющий повысить выходное напряжение и частоту электрического тока во много раз. В простонародье это устройство называют катушкой Тесла.

Сегодня большое количество техники использует принцип работы изобретения великого физика прошлых лет. Однако с того времени технологии усовершенствовались, поэтому появились более современные виды трансформаторов, однако их также называют катушками Тесла.

Виды катушек Тесла

  • Собственно, катушка самого Теслы (в составе использовался разрядник);
  • Трансформатор на радиолампе;
  • Катушка на транзисторах;
  • Катушки резонанса (две штуки).

Все катушки имеют схожий принцип работы, различаются только сложность их сборки и используемая электроника.


Рассматривая фото самодельных катушек Тесла, поневоле захочешь точно такую же себе домой. Ведь их работа настолько красивое зрелище, что невозможно оторвать глаз.

Однако многие опасаются браться за изготовление такого прибора, оправдывая это тем, что на работу уйдет много времени и сил, да и еще все это опасно для жизни.

Но заверяем вас, схема обычной катушки Тесла довольно проста. А потому приглашаем вам самостоятельно собрать это необычное устройство.

Пошаговая сборка катушки Тесла самостоятельно

Итак, высший пилотаж нам демонстрировать не нужно, поэтому будем делать самую простую катушку, использующую в своей сборке транзистор. Она наиболее щадящая по затратам времени и денег, а потому идеально нам подходит.


Строение катушки Тесла

  • Первичная катушка (первичный контур);
  • Вторичная катушка (вторичный контур);
  • Источник питания;
  • Заземление;
  • Кольцо защиты.

Это основные элементы трансформаторов. Нужно отметить, что в различных видах катушек могут встречаться и другие составляющие.

Принцип работы устройства

Источник питания подает на первичный контур нужное напряжение. После чего контур производит высокочастотные колебания, которые, в свою очередь, вынуждают вторичный контур создать свои колебания, идущие с первыми в резонансе. Благодаря этому, во второй катушке возникает ток с большим напряжением и частотой, который и образует столь ожидаемый эффект — стример. Теперь нужно собрать все элементы в одну кучу.

Необходимые материалы

  • В роли источника возьмем автомобильный аккумулятор (или любой другой источник постоянного напряжения 12-19 В);
  • Медный провод (желательно в эмали) диаметром от 0,1 до 0,3 мм. и длинной около 200 метров;
  • Еще один медный провод диаметром 1 мм;
  • Два каркаса (диэлектрика). Один (для вторичного контура) диаметром от 4 до 7 см. и длинной 15-30 см. Другой (для первичного контура) должен быть на несколько сантиметров больше в диаметре и короче в длине;
  • Транзистор D13007 (можно использовать другие, идентичные ему);
  • Плата;
  • Немного резисторов на 5 — 75 кОм, мощностью 0,25 Вт.


Сборка катушки Тесла самостоятельно дома

Вот мы плавно и подошли к сборке самой установки. Сначала создадим вторичный контур. Плотно без перехлестов наматываем тонкую проволоку диаметром 0,15 мм на длинный каркас. Нужно сделать не менее 1000 витков (но и сильно много не надо). После этого покрываем катушку лаком в несколько слоев (можно использовать и другие материалы), чтобы проволока не повредилась в дальнейшем.

Теперь о терминале. Он позволяет контролировать стриммеры, однако при небольших мощностях в нем нет необходимости, вместо этого можно просто вывести конец катушки вверх на несколько сантиметров.

Для другой катушки наматываем на оставшийся каркас толстую проволоку. Всего надо сделать 10 витков. Вторичный контур должен находиться внутри первичного.

Теперь устанавливаем все так, чтобы конструкция не свалилась и первичный и вторичный контуры не столкнулись вместе (именно для этого и нужен каркас). В идеале расстояние между ними должно быть в районе 1 см.

После соединяем все воедино. К плюсу источника питания подсоединяем первичный контур и один резистор, к которому последовательно подключаем другой резистор. К концу второго резистора подключаем вторичный контур и транзистор. Другой конец первичного контура подключаем ко второму контакту транзистора. А третий контакт транзистора подключаем к минусу источника питания.

При подключении важно не перепутать контакты транзистора. Также к нему нужно прикрутить радиатор или другое охлаждение. Все готово, можно пробовать устройство на деле. Однако не стоит забывать о безопасности. Ничего не трогать, только в диэлектрике!

Проверить работоспособность установки можно по наличию стримера или, если такового нет, можно поднести лампочку к катушке, и если она загорится, то все в порядке.

Фото катушек Тесла своими руками

Катушка Тесла – плоская спираль, обладающая наравне с индуктивностью большой собственной ёмкостью. Патент на изобретение подан в январе 1894 года. Автором, естественно, стал Никола Тесла. Под этим названием массово известен трансформатор, принцип действия прибора основывается на колебательных контурах.

Война токов

Сегодня это читается, как научный роман, но на стыке XIX и XX века действительно велась война токов. Все началось, когда за наладку работы генератора в Европе компания не заплатила молодому Тесла ни копейки. Хотя награда обещалась солидная. Недолго думая, Тесла покидает родину и плывёт в США. На пути исследователя преследуют неудачи, в итоге путешествие окончилось благополучно. Взять эпизод, когда в дороге теряются все деньги. Отказаться? Нет!

Тесла чудом пробирается на корабль и половину пути находится под эгидой капитана корабля, подкармливающего путешественника в собственной столовой. Отношения чуть охладились, когда молодой Тесла оказался замечен в центре возникшей на палубе потасовки, где раздавал с правой и левой, благодаря внушительному росту (при малом весе). В результате Тесла прибыл на берег и в первый день умудрился помочь с починкой генератора местному торговцу, заработав небольшое вознаграждение.

Имея на руках рекомендательные письма, Никола идёт устраиваться в компанию, где работает денно и нощно, проводя время сна на лежанке в лаборатории. Эдисон сыграл плохую шутку с молодым будущим визави: пообещал солидную награду за улучшения в работе электрического оборудования. Сложность быстро решилась, а изобретатель резьбы для цоколя лампочки сослался на коммерческий розыгрыш. Тесла уже мысленно распределил обещанную награду на проведение опытов, и шутка не вызвала у изобретателя тёплого душевного отклика. Молодой иммигрант покидает компанию с целью создать собственную.

Одновременно Тесла лелеет идеи на предмет борьбы с любителем розыгрышей. Во время прогулки с другом вдруг понимает, как реализовать теорию вращающегося поля Араго: требуется две фазы переменного тока. На момент 80-х годов XIX века идея считалась поистине революционной. Прежде двигатели, лампочки накала (в стадии совершенствования) и большинство лабораторных опытов обходились постоянным током. Так делал Георг Ом.

Тесла берет патент на двухфазный двигатель и заявляет, что возможны и сложные системы. Идеи заинтересовывают Вестингауза, начинается долгая история о правоте. Эдисон, как обычно, не скупился в средствах. Ходят истории, что он брал генератор переменного тока и истязал им до смерти животных. Якобы электрический стул придуман Эдисоном в соавторстве с неизвестным. Причём первый конструктор случайно или намеренно допустил ошибку, да так, что осуждённый мучился долгое время, в довершение буквально взорвался, выплеснув наружу внутренние органы.

Второго бедолагу адвокатам Вестингауза удалось спасти, заменив казнь на пожизненное заключение. Спасение не остановило Эдисона, вознамерившегося к стулу изобрести вдобавок и стол. Тесла постарался продемонстрировать ответный ход, выдвинув ряд аргументов:

Предприимчивые американские дельцы даже карты игральные выпустили, где фигурировала упомянутая война токов. К примеру, на изображении джокера размещена известная башня Ворденклиф, на строение ориентировались писатели-фантасты, режиссёры аналогичного толка кинокартин. Исторические факты уточняют, насколько напряжённой оказалась борьба – причина блеска изобретательского гения. Свитая из 50 витков толстого кабеля катушка Тесла конструктивно входила в состав башни Ворденклифа…

Конструкция катушки Тесла

Это потрясающая возможность, особым образом уложив витки медного провода, экономить на конденсаторных блоках. Если читатели в теме, то слышали про корректоры фазы для снижения трат на электроэнергию. Это конденсаторные блоки, компенсирующие индуктивное сопротивление потребителя. Особенно актуально для трансформаторов и двигателей. Лишние траты показывает лишь счётчик реактивной мощности. Это мнимая энергия, полезной работы у потребителя не выполняющая. Циркулируя туда и сюда, разогревает активные сопротивления проводников. В местности, где ведётся учёт полной мощности (к примеру, предприятия) это ощутимо увеличивает счета на оплату поставщикам электроэнергии.

Теперь несложно понять, как изобретение Тесла планировалось использовать в промышленности. Изобретатель в патенте US 512340 приводит две схожие конструкции катушки:

  • На первом чертеже представлена плоская спираль. Один вывод катушки Тесла находится на периферии, второй берётся из середины. Конструкция проста в работе. При разнице потенциалов между выводами в 100 В и количестве витков в тысячу, в среднем, между соседними точками спирали падает 0,1 В. Для вычисления цифры делим 100 на 1000. Собственная ёмкость пропорциональна квадрату 0,1 и не окажется слишком большой.
  • Тогда Тесла предлагает взглянуть на второй чертёж, где представлена катушка бифилярная. Это плоская спираль, но два провода вьются рядом. Причём концы второго контура закорочены и соединены с выводом первого. Получается, что альтернативная нить по длине обнаруживает одинаковый потенциал. Если представить, что к конструкции приложено 100 В, результат изменится. Действительно, теперь поблизости идут провода двух разных нитей, причём на единственной по длине — исключительно нуль. В результате, в среднем, разница потенциалов составляет 50 В, а собственная ёмкость катушки Тесла больше, нежели у предыдущей схемы, в 250000 раз. Это значительная разница, и очевидно, возможно найти выгодные параметры сети. К примеру, Тесла работал на частотах 200 — 300 кГц.

Изобретатель указывает, что испробовал различные формы и конфигурации. В смысле полезности квадрат не отличается от представленного на рисунках круга или прямоугольника. Форму волен выбирать конструктор. Катушки Тесла не находят сегодня массового применения. Изобретателю воспротивились предприниматели. Неизвестен разговор, произошедший между бизнесменами и Эдисоном, но, числясь акционерами новой ГЭС, магнаты прослышали, что башня Ворденклифа, построенная на удобном месте, способна стать первой пташкой в передаче энергии на расстояния без проводов.

Спонсор строительства был хозяином медных заводов и хотел просто продавать металл. Беспроводной метод передачи энергии невыгоден. Если бы Дж. П. Морган знал, что сегодня большая часть кабелей изготавливается из алюминия, возможно, отнёсся бы иначе, но вышло, что Никола Тесла достраивал башню в гордом одиночестве, и конструкция не приняла предполагаемого размаха.

По второй версии Никола Тесла задумал создавать энергию из воздуха, о чем судачат на Ютуб. Некий изобретатель доказывает, что в сердцевину магнита, на равном удалении от полюсов втягивается энергия эфира, и требуется уметь преобразовать её в электричество. Изложена кратко идея Теслы. Мастер-самоучка, осмелившийся на выставке представить генератор свободной энергии на 13 кВт, исчез в неизвестном направлении заодно с семьёй. Подобные факты наводят на мысль, что у башни Ворденклифа оказалось гораздо больше противников, чем принято думать.

По замыслу Тесла предвиделось 30 фабрик в мире. Они производили бы и принимали энергию, вели широкое вещание. По-видимому, посчитали, что это станет крахом местной экономики, хотя двигатели Бедини и сегодня строят, используя теории Тесал. Итак, катушки лежали в основе передающих и приёмных устройств: конструкция идентичная. Но сегодня эти любопытные изобретения надёжно забыты, если не считать микрополосковых технологий, где встречаются квадратные и круглые спирали-индуктивности аналогичного толка.

Трансформатор Тесла

Выше сказано, что в основе передающих устройств лежали катушки Тесла, допустимо назвать резонансными трансформаторами. Посредством трансформаторной связи на катушку Тесла закачивается высокий потенциал. Заряд идёт до пробоя разрядника, потом начинаются колебания на резонансной частоте. Если одна трансформаторная связь через катушку с большим количеством витков передаёт высокое напряжение на излучатель или разрядник.

Любой волен убедиться, что конструкция башни Ворденклиф напоминает гриб, но в основании лежит плоская катушка Тесла. В качестве излучателя применяется больших объёмов тор, обладающий ёмкостным сопротивлением. В современном виде промежуточный контур содержит обычные конденсаторы, настраиваемые под параметры «бублика». Большим достоинством конструкции считается отсутствие ферромагнитных материалов.



Понравилась статья? Поделитесь ей