Контакты

Двойная система сборных шин с обходной системой сборных шин. Сборные шины распределительных устройств

Необходимость соединения между собой подводящих и отводящих электроэнергию линий обусловливает применение на станциях, подстанциях, распределительных устройствах и пунктах сборных шин.

К сборным шинам присоединяют все генераторы или трансформаторы, вводы и отходящие линии. Электрическая энергия поступает на сборные шины и по ним распределяется к отдельным отходящим линиям. Таким образом, сборные шины являются узловым пунктом схемы соединения, через который протекает вся мощность станции, подстанции или распределительного пункта . Повреждение или разрушение сборных шин означает прекращение подачи электроэнергии потребителям. Поэтому сборным шинам уделяют серьезное внимание при проектировании, монтаже и эксплуатации электроустановок.

Простейшей системой является так называемая одиночная система шин (рис. 1), применяемая в электроустановках малой мощности с одним источником питания.

Рис. 1. Одиночная система шин

На станциях и подстанциях, имеющих два и более трансформатора или генератора, в целях повышения надежности снабжения потребителей электроэнергией шины секционируют, т. е. делят на две, а иногда и большее число частей. К каждой секции должно быть присоединено по возможности равное число генераторов или трансформаторов и отходящих линий (рис. 2).

Рис. 2. Одиночная секционированная система шин с межсекционным разъединителем

Секционирование шин сообщает схеме большую эксплуатационную гибкость (при выходе из работы одной секции шин отключается только часть вводов и отходящих линий).

Отдельные секции шин могут быть соединены между собой или выключателями. При секционировании шин разъединителем последний большей частью разомкнут. При этом обе секции работают раздельно, и при повреждении одной из секций питания лишается только часть потребителей. Кроме того, при раздельной работе трансформаторов снижаются токи короткого замыкания на стороне вторичного напряжения.

В случае повреждения трансформатора его отключают и обе секции соединяют между собой разъедиителем, отключив предварительно для предотвращения перегрузки неответственные потребители.

Допустима также работа с включенным разъединителем для обеспечения равномерного распределения нагрузки между питающими линиями. В этом случае при аварии на одной из секций прекращается питание электроэнергией всех потребителей на время, необходимое для разделения секций. В случае же автоматического отключения одного из источников питания второй источник будет перегружен в течение времени, необходимого для отключения неответственных потребителей.

При наличии межсекционного выключателя (рис. 3) последний может быть также при работе замкнутым или разомкнутым.

Рис. 3. Одиночная секционированная система шин с межсекционным выключателем

При работе с замкнутым выключателем его снабжают максимальной токовой защитой, которая автоматически отключает поврежденную секцию. Однако такое решение не рекомендуется, поскольку оно не дает существенных преимуществ по сравнению со схемами с межсекционными разъединителями.

Применение межсекционного выключателя рекомендуется только в тех случаях, когда он используется для автоматического включения резервного питания от другого рабочего источника и при нормальной работе электроустановки находится в разомкнутом состоянии.

При наличии на подстанции одиночной секционированной системы шин резервирующие друг друга отходящие линии следует присоединять к различным секциям шин.

Для большей надежности питания и большего удобства эксплуатационных переключений на крупных станциях и подстанциях применяют двойную систему шин (рис. 4), которая допускается только при наличии соответствующего обоснования в каждом отдельном случае.

Рис. 4. Двойная система сборных шин

При нормальной работе электроустановки одна система шин является рабочей, а другая - резервной. Обе системы шин могут быть соединены между собой шиносоединительным выключателем, который позволяет осуществить переход с одной системы шин на другую без перерыва в подаче энергии, а также может быть использован в качестве замены любого из выключателей электроустановки. В последнем случае линию, с которой выключатель снят для ремонта, присоединяют к резервной системе шин и соединяют рабочую и резервную системы шин шиносоединительным выключателем.


Распределение электроэнергии.

Производство электрической энергии мы рассмотрели в первой части статьи. Во второй мы узнаем, почему же электростанции работают параллельно, в объединенной энергосистеме, а не отдельно, каждая на своего потребителя. Так же посмотрим на элементы энергосистем, без которых они не могут существовать.

Понять, почему же энергосистемы работают параллельно, нам поможет суточный график производства и потребления электроэнергии, который был взят с сайта «СО ЕЭС». На верхнем графике показана частота в ЕЭС России, а точнее в объединенных энергосистемах Центра, Северо-запада, Юга, Средней Волги, Урала и Сибири, а на нижнем ОЭС Востока, которая хоть и имеет электрические связи с остальной энергосистемой, но работает не синхронно с ЕЭС России.

По оси 0Х откладывается время в часах, а по оси 0У – частота электрического тока в герцах. Шаг точек, по которым был построен график – 1 час.

Частота является показателем равенства производства и потребления активной энергии. Если частота больше 50 Гц, то энергии производиться больше, чем потребляется. Если частота меньше 50 Гц, то наоборот, энергии производиться меньше, чем нужно. Частота – это один из самых важных показателей энергосистемы. Именно при номинальной частоте все движущиеся механизмы – генераторы, двигатели работают в наиболее экономичном режиме.

В России принят стандарт, по которому частота не должна выходить за пределы в 50+-0.05 Гц. Как видите, осуществить такую точную уставку в несинхронной зоне не получается. Плюс не забываем, что мощность нагрузки меняется каждую секунду, а график построен с интервалом в час.

Если частота опустится ниже 48,5 Гц, а к тому времени не удалось поднять мощность генерации (такое бывает при аварийном отключении крупного энергоблока электростанции), то начинает работу АЧР (Автоматическая частотная разгрузка), которая по нескольким ступеням, отключает потребителей. Ее главная задача – остановить снижение частоты в энергосистеме, т.к. генераторы, вращаются в электрическом поле с частотой, кратной частоте системы, а на низких частотах возможно появления сильных вибраций. К тому же уменьшается производительность питательных и прочих насосов на электростанциях, и приходиться вынужденно снижать мощность генерации, т.к. уменьшается количество теплоносителя – воды.

Но отключить можно не каждого потребителя, поэтому все они были разделены на 3 категории. Третья – это потребитель, который без проблем переживет сутки без электроэнергии. К этой категории относится население. Резерв не обязателен. Именно на эту категорию нацелена АЧР.

Вторая – более ответственные потребители, которые будут иметь большой ущерб, брак продукции или экономические потери при отключении. Поэтому таких потребителей можно отключать только на время, необходимое для ручного или автоматического ввода резерва. Таким образом, вторая категория не должна отключаться действием АЧР. Обязательно есть резерв.

Первая категория. Самая ответственная нагрузка. При отключении электроэнергии возможны человеческие жертвы, техногенные катастрофы и прочие прелести человеческой цивилизации. Поэтому эта категория может быть отключена только на время, необходимое для автоматического включения резерва. Наличие резерва обязательно. Кроме того в первой категории выделяют еще одну – особую. Эта категория должна иметь третий резервный источник питания для безопасного завершения работы. Сюда, например, относятся АЭС.

Итак, первая причина объединения энергосистем – поддержание баланса производства и потребления. Вторая причина – при параллельной работе станций можно держать на каждой из них меньший резерв мощности. Он бывает:

1) Вращающийся . Это агрегаты электростанций, работающие в системе на мощности, меньшей максимальной. В среднем, это 50-80 %. В случае необходимости быстро поднять генерацию, в первую очередь использую именно этот резерв.

2) Горячий . К нему относятся агрегаты, которые не включены в систему, но при первой же необходимости могут быть включены за короткое время. В основном, к этому резерву стараются отнести ГЭС, т.к. та тепловых станциях такой режим работы крайне невыгоден.

3) Холодный . Агрегаты можно будет запустить в работу в течение довольно долгого времени.

Третья причина – в ЕЭС можно распределять нагрузку между станциями, для наиболее выгодной экономически работы как самих станций, так и системы. Не стоит забывать, что для ТЭЦ и АЭС наиболее выгодно и безопасно использовать базовый ражим работы. ГРЭС, ГАЭС и, частично, ТЭС нужно активнейшим образом привлекать к регулированию частоты.

Кроме того, мощность нагрузки меняется в течение суток и года. Традиционно в России суточный максимум нагрузки приходится на 11-00 и 19-00, а годовой – на зимнее время года. В течении ночи нагрузка минимальна, что требует разгрузки электростанций.

Основными элементами энергосистем являются сети и подстанции .

В России для сетей переменного тока принята стандартная шкала напряжений: 0.4, 3, 6, 10, 20, 35, 110, 220, 330, 500, 750 кВ . В распределительных сетях городов, в основном, используют напряжения 0.4, 6, 10, 110 кВ; и трансформацию 110/6(10) кВ, а затем 6(10)/0.4 кВ. В сельской местности, в основном, трансформация 35/6(10) кВ. Системные сети, из которых и состоит ЕЭС России, исторически разделились на 2 условные части: ОЭС С-З, часть ОЭС Центра (Брянск, Курск, Белгород), где использую шкалу 110 – 330 – 750 кВ, и остальную, где есть шкала 110 – 220 – 500 кВ. На Кавказе распространена шкала 110 – 330 – 500 кВ.

Сегодня при проектировании новых сетей используют ту шкалу напряжения, которая исторически сложилась в регионах.

Сети разных напряжений можно «узнать» по внешнему виду практически со 100% вероятностью, если они исполнены в виде ВЛ. Не забываем, что система электроснабжения трехфазная, поэтому одна цепь содержит 3 провода (3 фазы). В сетях 0.4 кВ 4 провода (3 фазы и ноль).

1) ВЛ 6 (10) кВ. Один – два изолятора.

2) ВЛ 35 кВ. 3 – 5 изоляторов в гирлянде.

3) ВЛ 110 кВ 8 -10 изоляторов в гирлянде.

4) ВЛ 220 кВ 12 – 15 изоляторов в гирлянде.

5) ВЛ 330 кВ. Расщепление фазных проводников на 2 провода.

6) ВЛ 500 кВ. Расщепление фазных проводников на 3 провода.

7) ВЛ 750 кВ. Расщепление фазных проводников на 4-5 проводов.

Вы скажете: «А зачем проводники фаз расщепляют?» Расщепление – это один из методов борьбы с «Коронным разрядом» или попросту – короной. Корона – это самостоятельный газовый разряд, происходящий в резко неоднородных полях. В процессе коронирования воздух вокруг провода нагревается и ионизируется, на это тратиться энергия, к тому же возникают радиопомехи и шумовое загрязнение. Поэтому всячески стараются не допустить резких изменений электромагнитного поля — устанавливают минимальное эквивалентное сечение проводов, экраны на изоляторах и т.д.

Вы могли заметить, что провода крепятся к опорам по-разному. Это связано с функциями опор. Все они делятся на:

1) Анкерные. Эти опоры держат тяжение проводов, а так же их вес и другие воздействия. Расстояние между двумя соседними анкерными опорами называется анкерным пролетом. Анкерные опору позволяют делать повороты линий, их заходы на ПС, а так же уменьшают зону аварии при обрыве проводов. Соседние анкерные пролеты соединяются электрически с помощью перемычки – т.н. шлейфа.

2) В промежутке между анкерными пролетами расположены промежуточные опоры. Они держат вес проводов и ветровые воздействия на провод, и саму опору. По длине линии их должно быть не менее 70% от всех опор.

3) Специальные опоры

Служат для преодолевания каких-либо преград, например, водохранилища. В отличие от предыдущих типов опор, специальные опоры обычно подбирают под каждый отдельный случай и не выпускаются серийно.

Итак, линии, напряжением выше 1 кВ, какие бы они не были – кабельные или воздушные, приходят на ПС – подстанции. Они состоят из силового оборудования – систем и секций шин, силовых и измерительных трансформаторов, выключателей; устройств РЗиА, средств связи и т.д.

Рассмотрим некоторые элементы ПС.

1)Силовой трехфазный трансформатор.

Служит для преобразования одного класса напряжения в другое. Трансформаторы бывают повышающими и понижающими. Трехфазный трансформатор – это фактически 3 однофазных трансформатора, имеющих общий магнитопровод.

При коэффициентах трансформации меньше 3 используют автотрансформаторы, у которых вторичная обмотка является частью первичной, то есть они имеют не только магнитную, но и электрическую связь. Это повышает КПД трансформации.

2) Измерительные трансформаторы.


Рис 14, Рис 14,1

Трансформаторы тока. Включаются в цепь, как и амперметр, последовательно. С их помощью меряют токи, это один из основных элементов РЗиА. Особенность работы состоит в том, что ни при каких условиях нельзя разрывать цепь вторичной обмотки, иначе ТТ выйдет из строя, при этом обязательно будут голливудские эффекты…

Трансформаторы напряжения. Включаются, как и вольтметр, параллельно. От вторичных обмоток помимо защит, питаются непосредственно силовые цепи РЗиА.

3) Выключатели.

Применяются следующие схемы распределительных устройств : с одной несекционированной системой шин; с одной секционированной системой шин; с двумя одиночными секционированными системами шин"; с четырьмя одиночными секционированными системами шин2; с одной секционированной и обходной системами шин; с двумя системами шин; с двумя секционированными системами шин; с двумя системами шин и обходной; с двумя секционированными системами шин и обходной.

Схема с одной несекционированной системой шин - самая простая схема, которая применяется в сетях 6-35 кВ (рис. 3.4.2). В сетях 10(6) кВ схему называют одиночной системой шин. На отходящих и питающих линиях устанавливается один выключатель, один шинный и один линейный разъединители. 1 Для РУ 10(6) кВ ПС с двумя трансформаторами с расщепленной обмоткой или с одним трансформатором с расщепленной обмоткой и двумя сдвоенными реакторами. 2 Для РУ 10(6) кВ ПС с двумя трансформаторами с расщепленной обмоткой и двумя сдвоенными реакторами.

Рис. 3.4.2. Схема с одной системой шин

Недостатки данной схемы: в схеме используется один источник питания; профилактический ремонт сборных шин и шинных разъединителей связан с отключением распределительного устройства, что приводит к перерыву электроснабжения всех потребителей на время ремонта; повреждения в зоне сборных шин приводят к отключению распределительного устройства; ремонт выключателей связан с отключением соответствующих присоединений.

Схема с одной секционированной выключателем системой шин (рис. 3.4.3) позволяет частично устранить перечисленные выше недостатки предыдущей схемы путем секционирования системы шин, т. е. разделения системы шин на части с установкой в точках деления секционных выключателей. Секционирование, как правило, выполняется так, чтобы каждая секция шин получала питание от разных источников питания. Число присоединений и нагрузка на секциях шин должны быть по возможности равными. В нормальном режиме секционный выключатель может быть включен (параллельная работа секций шин) или отключен (раздельная работа секций шин). В системах электроснабжения промышленных предприятий и городов предусматривается обычно раздельная работа секций шин. Данная схема проста, наглядна, экономична, обладает достаточно высокой надежностью, широко применяется в промышленных и городских сетях для электроснабжения потребителей любой категории на напряжениях до 35 кВ включительно.
Рис. 3.4.3. Схема с одной секционированной системой шин

Допускается применять данную схему при пяти и более присоединениях в РУ 110-220 кВ из герметизированных ячеек с элегазовой изоляцией, а также в РУ 110 кВ с выкатными выключателями при условии возможности замены выключалей в эксплуатационный период. В сетях 10(6) кВ эта схема имеет преимущество. По сравнению с одиночной несекционированной системой шин данная схема имеет более высокую надежность, так как при коротком замыкании на сборных шинах отключается только одна секция шин, вторая остается в работе. Недостатки схемы с одной секционированной выключаталем системы шин: на все время проведения контроля или ремонта секции сборных шин один источник питания отключается; профилактический ремонт секции сборных шин и шинных разъединителей связан с отключением всех линий, подключенных к этой секции шин; повреждения в зоне секции сборных шин приводят к отключению всех линий соответствующей секции шин; ремонт выключателей связан с отключением соответствующих присоединений. Вышеперечисленные недостатки частично устраняются при использовании схем с большим числом секций. На рис. 3.4.4 представлена схема РУ 10(6) кВ подстанции с двумя трансформаторами с расщепленной обмоткой или с двумя сдвоенными реакторами. Схема имеет четыре секции шин и называется «две одиночные секционированные выключателями системы шин». При наличии одновременно двух трансформаторов с расщепленной обмоткой и двух сдвоенных реакторов применяется схема, состоящая из восьми секций шин, которая называется «четыре одиночные секционированные выключателями системы шин» (рис. 3.4.5).

Схема с одной секционированной выключателем и обходной системами шин позволяет проводить ревизию и ремонт выключателей без отключения присоединения. В нормальном режиме обходная система шин находится без напряжения, разъединители, соединяющие линии и трансформаторы с обходной системой шин, отключены. В схеме могут быть установлены два обходных выключателя, осуществляющие связь каждой секции шин с обходной. В целях экономии средств ограничиваются одним обходным выключателем с двумя шинными разъединителями, с помощью которых обходной выключатель может быть присоединен к первой или второй секциям шин. Именно эта схема предлагается в качестве типовой для распределительных устройств напряжением 110-220 кВ при пяти и более присоединениях (рис. 3.4.6).
Рис. 3.4,4. Схема с двумя одиночными секционированными системами шин (ТСН при постоянном оперативном токе подключаются к сборным шинам) Рис. 3.4.6. Схема с одной секционированной и обходной системами шин с обходным (Q1.) и секционным (Q2) выключателями

В схеме с двумя системами сборных шин каждое присоединение содержит выключатель, два шинных разъединителя и линейный разъединитель. Системы шин связываются между собой через шиносоединительный выключатель (рис. 3.4.7). Возможны два принципиально разных варианта работы этой схемы. В первом варианте одна система шин является рабочей, вторая - резервной. В нормальном режиме работы все присоединения подключены к рабочей системе шин через соответствующие шинные разъединители. Напряжение на резервной системе шин в нормальном режиме отсутствует, шиносоединительный выключатель отключен. Во втором варианте, который в настоящее время получил наибольшее применение, вторую систему сборных шин используют постоянно в качестве рабочей в целях повышения надежности электроустановки. При этом все присоединения к источникам питания и к отходящим линиям распределяют между обеими системами шин. Шиносоединительный выключатель в нормальном режиме работы замкнут. Схема называется «две рабочие системы шин». Схема с двумя системами шин позволяет производить ремонт одной системы шин, сохраняя в рабочем состоянии все присоединения. Для этого все присоединения переводят на одну систему шин путем соответствующих переключений коммутационных аппаратов. Данная схема является гибкой и достаточно надежной. Недостатки схемы с двумя системами шин: при ремонте одной из систем шин на это время снижается надежность схемы;

Рис. 3.4.7. Схема с двумя системами шин с шиносоединительным выключателем Q1

При замыкании в шиносоединительном выключателе отключаются обе системы шин; ремонт выключателей и линейных разъединителей связан с отключением на время ремонта соответствующих присоединений; сложность схемы, большое число разъединителей и выключателей. Частые переключения с помощью разъединителей увеличивают вероятность повреждений в зоне сборных шин. Большое число операций с разъединителями и сложная блокировка между выключателями и разъединителями приводят к возможности ошибочных действий обслуживающего персонала. Схему «две рабочие системы шин» допускается применять в РУ 110-220 кВ при числе присоединений от 5 до 15, если РУ выполнено из герметизированных ячеек с элегазовой изоляцией, а также в РУ 110 кВ с выкатными выключателями при условии замены выключателя в удовлетворяющее эксплуатацию время. В РУ 110-220 кВ при числе присоединений более 15 делят сборные шины на секции с установкой в точках деления секционных выключателей (рис. 3.4.8). При этом должно предусматриваться два ши-носоединительных выключателя. Таким образом, распределительное устройство делится на четыре части, связанные между собой двумя секционными и двумя шиносоединительным и выключателями. Данная схема называется «две рабочие секционированные выключателями системы шин». Она используется при тех же условиях, что и схема «две рабочие системы шин».
Рис. 3.4.8. Схема с двумя секционированными системами шин с двумя шиносоединительными (QI, Q2) и двумя секционными (Q3, Q4) выключателями

Схема с двумя системами шин и обходной с шиносоединительным и обходным выключателями обеспечивает возможность поочередного ремонта выключателей без перерыва в работе соответствующих присоединений (рис. 3.4.9). Схема рекомендуется к применению в РУ 110-220 кВ при числе присоединений от 5 до 15. В нормальном режиме работы обе системы шин являются рабочими, шиносоединительный выключатель находится во включенном положении.
Рис. 3.4.9. Схема с двумя системами шин и обходной с шиносоединительным (Q1) и обходным (Q2) выключателями При числе присоединений более 15 или более 12 и при установке на подстанции трех трансформаторов мощностью 125 МВА и более рекомендуется к применению схема «две рабочие секционированные выключателями и обходная системы шин» с двумя шиносоединительными выключателями и двумя обходными выключателями. Связь между секциями шин обеспечивается через секционные выключатели, которые в нормальном режиме отключены (рис. 3.4.10). Рекомендации по применению данной схемы распределительных устройств 6-220 кВ приведены в табл. 3.4.1.
Рис. 3.4.10. Схема с двумя системами шин и обходной с двумя шиносоединительными (Ql, Q2) и двумя обходными (Q3, Q4) выключателями (Q5, Q6 - секционные выключатели)

Система сборных шин

Область применения

Номер (номинальное напряжение-индекс схемы по )*

Одиночная система шин

В РП, РУ 10(6) кВ при отсутствии присоединений с электроприемниками первой категории или при наличии резервирования их от других РП, РУ

Одна рабочая секционированная выключателем система шин

В РП, РУ 10(6) кВ В РП 35 кВ; в РУ ВН и СИ 35 кВ. Допускается применять в РУ 110-220 кВ при пяти и более присоединениях, если РУ выполнено из герметизированных ячеек с элегазовой изоляцией, а также в РУ 110 кВ с выкатными выключателями при условии замены выключателя в удовлетворяющее эксплуатацию время

Две одиночные секционированные выключателями системы шин

В РУ 10(6) кВ с двумя трансформаторами с расщепленной обмоткой или с двухобмоточными трансформаторами и двумя сдвоенными реакторами

Четыре одиночные секционированные системы шин

В РУ 10(6) кВ с двумя трансформаторами с расщепленной обмоткой и с двумя сдвоенными реакторами

Одна рабочая секционированная выключателем и обходная системы шин

В РУ 110-220 кВ при пяти и более присоединениях

Две рабочие системы шин

Допускается применять при числе присоединений от 5 до 15 в РУ 110-220 кВ из герметизированных ячеек с элегазовой изоляцией, а также в РУ 110 кВ с выкатными выключателями при условии замены выключателя в удовлетворяющее эксплуатацию время

Две рабочие и обходная системы шин

1. В РУ 10 кВ для энергоемких предприятий с электроприемниками первой категории (например, для предприятий цветной металлургии). 2. В РУ 110-220 кВ при числе присоединений от 5 до 15

Две рабочие секционированные выключателями системы шин

Допускается применять при числе присоединений более 15 в РУ 110-220 кВ из герметизированных ячеек с элегазовой изоляцией, а также в РУ 110 кВ с выкатными выключателями при условии замены выключателя в удовлетворяющее эксплуатацию время

Две рабочие секционированные выключателем и обходная системы шин с двумя шиносоединитель-ными и двумя обходными выключателями

1. В РУ 110-220 кВ при числе присоединений более 15. 2. В РУ 220 кВ при трех, четырех трансформаторах мощностью 125 МВ-А и более при общем числе присоединений от 12 и более

* Первая цифра означает номинальное напряжение, вторая - индекс схемы


В устройствах рассматриваемого вида (рис. 5.1, а ) каждое присоединение

содержит в общем случае выключатель и два разъединителя - шинный и

линейный. Выключатели, как известно, служат для неавтоматического и автомати-

ческого отключения и включения присоединений. Разъединители необходимы для

изоляций аппаратов и присоединений на время их ремонта от смежных частей

системы, находящихся под напряжением.

Рис.5.1. Принципиальная схема РУ с одной системой сборных шин.

а - шины не секционированы; б - секционированные шины; в - секционированные шины и

обходное устройство.

Термин «изоляция» следует понимать как создание видимого разрыва цепи в

воздухе, обеспечивающего безопасность для людей. Так, например, при ремонте

выключателя какого-либо присоединения он должен быть изолирован от сбор-

ных шин и от сети, поскольку линия, отключенная со стороны источника энергии,

может оставаться включенной с противоположного конца. Только в частных

случаях, когда возможность подачи напряжения с противоположного конца

исключена, линейные разъединители могут отсутствовать. Это относится, на-

пример, к присоединениям двухобмоточных трансформаторов, поскольку ремонт

выключателя производится при отключенном трансформаторе со стороны

высшего и низшего напряжения. В присоединениях генераторов линейные

разъединители также обычно не предусматриваются.

В рассматриваемой схеме операции с разъединителями допускаются только

при отключенном выключателе соответствующего присоединения. Ясность этого

требования и простота РУ практически исключают ошибочные операции с

разъединителями. Тем не менее предусматриваются блокирующие устройства,

препятствующие неправильным операциям.

Достоинство рассматриваемой схемы с одной системой сборных шин

заключается в ее исключительной простоте и, следовательно, низкой стоимости.

Недостатки ее следующие:

Профилактический ремонт сборных шин и шинных разъединителей связан

с отключением всего устройства на время ремонта;

Ремонт выключателей и линейных разъединителей связан с отключением

соответствующих присоединений, что нежелательно, а в некоторых случаях

недопустимо;

Короткое замыкание в зоне сборных шин приводит к полному отключению

То же самое имеет место в случае внешнего замыкания и отказа

выключателя соответствующего присоединения.

Перечисленные недостатки могут быть частично устранены с помощью

указанных ниже дополнительных устройств. Приведенные затраты при этом

увеличиваются.Чтобы избежать полного отключения РУ при замыкании в зоне

сборных шин и обеспечить возможность их ремонта по частям, прибегают к

секционированию сборных шин, т. е. разделению их на части - секции с

установкой в точках деления выключателей, нормально замкнутых или нормально

разомкнутых, в зависимости, от преследуемой цели. Эти выключатели называют

секционными. Относительно редко встречаются устройства, сборные шины

которых секционированы через разъединители, замкнутые или разомкнутые при

нормальной работе. Секционирование должно быть выполнено так, чтобы каждая

секция имела источники энергии (генераторы, трансформаторы) и соответствую-

щую нагрузку (рис. 5.1,6 ). Присоединения распределяют между секциями с таким

расчетом, чтобы вынужденное отключение одной секции по возможности не

нарушало работы системы и электроснабжения потребителей. Число секций

зависит от числа и мощности источников энергии, напряжения, схемы сети и

режима установки. В РУ с большим числом секций сборные шины замыкают в

На станциях секционные выключатели при нормальной работе, как правило,

замкнуты, поскольку генераторы должны работать параллельно. В случае к.з. в

зоне сборных шин поврежденная секция отключается автоматически. Остальные

секции остаются в работе. Таким образом, секционирование через нормально

замкнутые выключатели способствует повышению надежности РУ и

электроустановки в целом. Заметим, однако, что в случае замыкания в секционном

выключателе отключению подлежат две смежные секции, следовательно, в

устройствах с двумя секциями полное отключение не исключено, хотя

вероятность его относительно мала.

В РУ низшего напряжения 6-10 кВ подстанций секционные выключатели,

как правило, разомкнуты в целях ограничения тока к.з. Выключатели снабжают

устройствами автоматического включения резервного питания (АВР), замы-

кающими выключатели в случае отключения трансформатора, чтобы не нарушать

электроснабжения потребителей.

Чтобы обеспечить возможность поочередного ремонта выключателей, не

нарушая работы соответствующих цепей, предусматривают (преимущественно в

РУ 110-220 кВ) обходные выключатели и обходную систему шин с соответст-

вующими разъединителями в каждом присоединении (рис. 5.1, в). При

нормальной работе установки обходные разъединители и обходные выключатели

отключены. Замена рабочего выключателя обходным производится в следующем

порядке: включают обходный выключатель, чтобы убедиться в исправности

обходной системы; отключают обходный выключатель; включают обходный

разъединитель ремонтируемого присоединения; вновь включают обходный

выключатель; отключают выключатель, подлежащий ремонту, и соответствующие

разъединители. Защита цепи во время ремонта осуществляется обходным

выключателем, снабженным соответствующим комплектом релейной защиты.

В устройствах с секционированными сборными шинами и обходной

системой шин (рис. 5.1, в ), строго говоря, необходимы два обходных

выключателя. Однако в целях экономии средств часто ограничиваются одним

выключателем с двумя шинными разъединителями, с помощью которых

обходный выключатель может быть присоединен к той или другой секции

сборных шин.

Распределительные устройства с одной секционированной системой

сборных шин получили применение на станциях и подстанциях при номинальных

напряжениях до 220 кВ включительно. Основным условием применения этой

схемы является наличие достаточного резерва в источниках энергии и линиях и,

следовательно, возможность кратковременного отключения одной из секций без

нарушения работы электроустановки в целом. Аналогичные устройства, но с об-

ходной системой шин, применяют при ограниченном числе присоединений в

качестве устройств среднего напряжения 110-220 кВ станций и подстанций.__

Страница 2 из 7

I. СХЕМЫ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ СБОРНЫХ ШИН 6-10 кВ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ
Сборные шины 6-10 кВ являются главным элементом распределительного устройства генераторного напряжения, сооружаемого, как правило, на теплоэлектроцентралях (ТЭЦ). Они предназначены для приема электроэнергии, поступающей от генераторов, трансформаторов связи, и ее распределения между отходящими от этих шин кабельными или воздушными потребительскими линиями. Надежность и бесперебойность электроснабжения потребителей в значительной мере зависят от надежности сборных шин.
На генераторном напряжении ТЭЦ 6-10 кВ применяются обычно следующие схемы первичных электрических соединений:

  1. одиночная секционированная система сборных шин;
  2. двойная секционированная система шин с одним выключателем на цепь (при этом секционируется только рабочая система шин).

Обе эти схемы могут выполняться в двух модификациях:
а) прямолинейная схема при количестве секций от двух до трех;
б) схема «кольца» при количестве секций больше трех.

По условиям электродинамической стойкости электрооборудования в настоящее время предусматривается подключение к каждой секции шин генератора мощностью не более 63 МВт при генераторном напряжении 6 кВ, а при напряжении 10 кВ - не более одного генератора мощностью 100 МВт или двух генераторов мощностью по 63 МВт. Этим ограничивается уровень токов короткого замыкания (КЗ) на сборных шинах 6-10 кВ. Кроме того, для дополнительного ограничения уровня токов КЗ при повреждениях на сборных шинах, в цепи генераторов и в сети на шинах устанавливают секционные реакторы. Связь с энергосистемой обычно осуществляется с помощью двух- обмоточных или трехобмоточных трансформаторов связи, обмотки высокого напряжения которых присоединяются к сборным шинам напряжения 35 кВ и выше.

Одиночная секционированная система сборных шин.

На рис. 1 приведена схема первичных соединений электростанций с одной системой сборных шин 6 кВ, состоящей из трех секций, соединенных с помощью последовательно включенных выключателей и секционных реакторов.
Подключение каждого присоединения (генератора, трансформатора, линии) к сборным шинам производится через выключатели и шинные разъединители. Разъединители предназначены для создания видимого разрыва цепи при ремонтных работах и не являются оперативными элементами. Операции с разъединителями допускаются только при отключенном выключателе присоединения, для чего предусматриваются специальные схемы блокировки.

Секционирование сборных шин с помощью секционных выключателей (СВ) выполняется таким образом, чтобы каждая секция имела источники питания (генераторы, трансформаторы) и соответствующую нагрузку. Присоединения должны быть распределены между секциями так, чтобы при выходе из строя одной из секций сборных шин ответственные потребители продолжали получать питание от секции, оставшейся в работе. В связи с тем что на электростанциях генераторы работают параллельно, секционные выключатели при нормальной работе включены.
При КЗ на секции сборных шин поврежденная лекция обесточивается путем отключения питающих элементов и секционных выключателей после срабатывания соответствующей релейной защиты, а неповрежденные секции остаются в работе.
На рис. 1 показана схема сборных шин с тремя секциями и двумя секционными реакторами. Нагрузку между секциями сборных шин обычно распределяют равномерно, поэтому в нормальном режиме через секционный реактор проходит незначительный ток, потери мощности и энергии в нем малы, а напряжения на секциях примерно одинаковы. Для выравнивания напряжения на секциях сборных шин и улучшения условий питания нагрузки при отключении питающих элементов на одной из секций в схеме предусмотрены разъединители, шунтирующие секционные реакторы. Шунтирование секционных реакторов допускается в тех случаях, когда после этого расчетный уровень токов КЗ не превосходит допустимого для электрооборудования.
Линейные реакторы применяются для ограничения тока КЗ при повреждениях на отходящих кабельных линиях. Кроме того, они способствуют поддержанию остаточного напряжения на сборных шинах электростанции, что повышает устойчивость параллельной работы генераторов и надежность питания потребителей электроэнергией. При необходимости значительного ограничения тока КЗ в сети устанавливают реакторы в каждой кабельной линии. Однако допускается подключение к одному реактору двух и более кабельных линий одного или различных потребителей. В последнем случае каждая кабельная линия должна присоединяться через отдельный разъединитель.
Если к шинам станции должно быть присоединено большое количество кабельных линий, как правило, применяется групповое реактирование. При этом удешевляется конструкция распределительного устройства (РУ), уменьшается число присоединений к сборным шинам, повышается надежность работы электроустановки в целом. Однако в схеме с групповыми реакторами КЗ на одной из линий приводит к снижению напряжения на всех линиях, присоединенных к той же кабельной сборке.
На рис. 1 показано РУ 6 кВ при следующей схеме включения элементов отходящих линий: шины - выключатель- реактор - линия. Такая схема применена на ряде электростанций с генераторами мощностью менее 63 МВт. При этом выключатель не рассчитан на отключение КЗ до реактора.


Рис. 2. Схема электрических соединений одиночной системы шин 10 кВ
Питание собственных нужд (СН) электростанции производится здесь от одинарных реактированных линий СН 6 кВ. Они подключаются к сборным шинам аналогично линиям потребителей.
На рис. 2 приведена схема первичных соединений электростанции с одиночной секционированной системой сборных шин 10 кВ. Она отличается отсутствием реактированных линий 6 кВ СН и наличием трансформатора СН (ТСН) 10/6 кВ.
Показанная на рис 2 схема включения элементов отходящих потребительских линий (шины - реактор - выключатель- линия) обычно применяется на напряжении 6- 10 кВ на электростанциях с генераторами мощностью 63-100 МВт. Для повышения надежности электроснабжения потребителей, питающихся от шин 6-10 кВ, применяют комплектные РУ 6-10 кВ, позволяющие при ремонте выключателя производить быструю замену ячейки. Время перерыва питания ответственных потребителей при этом может быть минимальным.
Число секций в PV зависит от числа и мощности источников питания. При одиночной секционированной системе шин с прямолинейной схемой секционные реакторы выбираются по номинальному току таким образом, чтобы при выходе из работы генератора на одной из крайних секций на нее могла быть подана мощность, соответствующая нагрузке этой секции. Так как она обычно меньше мощности генератора, номинальный ток секционного реактора, как правило, принимается равным 60-80% номинального тока генератора (генераторов) данной секции.


Рис. 3. Схема электрических соединений одиночной системы шин 10 кВ, соединенной в «кольцо»
При числе секций, большем трех, во избежание перетоков мощности вдоль сборных шин и для создания крайним и средним секциям одинаковых эксплуатационных условий одиночную секционированную систему шин, как указано выше, замыкают в кольцо.
На рис. 3 приведена схема электростанции со сборными шинами, соединенными в «кольцо». Шины здесь секционированы на четыре части - по числу установленных генераторов. Крайние секции / и IV с помощью выключателя и секционного реактора соединены между собой и образуют замкнутое кольцо. В нормальном режиме все секционные выключатели включены и генераторы работают параллельно. Трансформаторы связи подключены симметрично к секциям / и ///. Секционные реакторы рассчитаны на режим питания нагрузки секции при выходе из строя любого питающего элемента. Номинальный ток секционных реакторов в схеме «кольца» принимают равным 50-60 % номинального тока генератора.
Рассматриваемая схема обладает следующими преимуществами по сравнению с прямолинейной схемой: 1) при КЗ на любой секции шин отключаются два секционных выключателя, связанные с этой секцией, и поврежденная секция отделяется от неповрежденных; при этом не нарушается параллельная работа отдельных генераторов; 2) схема симметрична в отношении токов КЗ, так как при коротких замыканиях на любой из секций токи КЗ одинаковы; 3) при отключении одного из генераторов нагрузка, присоединенная к его секции, питается от других генераторов с двух сторон, что создает меньшую разницу напряжений на смежных секциях и позволяет выбрать секционные реакторы меньшей пропускной способности, чем при прямолинейной схеме. Однако на установку дополнительных секционного выключателя и реактора и создание перемычки между крайними секциями требуются соответствующие затраты.
Рассмотренные выше схемы с одной секционированной системой шин (рис. 1-3) просты, наглядны и недороги. К недостаткам схем следует отнести снижение надежности питания потребителей при ремонтах сборных шин и шинных разъединителей и при повреждениях на одной из секций сборных шин, так как при этом неответственные потребители (питающиеся по одной линии) теряют _ питание, а ответственные потребители (имеющие питание от разных секций) питаются по одной цепи. Однако несмотря на эти недостатки схемы с одиночной секционированной системой шин широко применяются на станциях небольшой и средней мощности при количестве присоединений на секцию до шести - восьми. При большем числе присоединений используют схемы с двумя системами сборных шин.

Двойная секционированная система шин.

На рис. 4 показана первичная схема электростанции с двумя системами сборных шин (рабочей и резервной). Рабочая система шин (СШ), как и в схемах с одиночной системой шин, секционируется, а резервная система шин, как правило, не секционируется. Кроме секционных выключателей, которые при нормальной работе включены, на каждой секции предусматриваются также шиносоединительные выключатели (ШСВ), отключенные в нормальном режиме. Каждое присоединение подключается к сборным шинам через развилку из двух разъединителей, один из которых нормально отключен.
Схема с двумя системами сборных шин позволяет:

  1. поочередно ремонтировать сборные шины без перерыва в работе станции и без нарушения питания потребителей;
  2. ремонтировать любой шинный разъединитель, отключая лишь одно присоединение (остальные присоединения переводятся на другую систему шин);
  3. быстро восстанавливать работу станции при повреждении на секции (потребители теряют питание только на время, необходимое для переключения оперативным персоналом соответствующих присоединений на резервную систему шин).


Рис. 4. Схема электрических соединений двойной системы шин 6 кВ
Такая система применяется при большом числе присоединений на секцию, особенно в тех случаях, когда потребители питаются по нерезервируемым линиям.
Шиносоединительные выключатели используются для перевода любых присоединений с одной системы шин на другую без их отключения, а также для замены в случае необходимости любого из присоединенных к шинам выключателей. Кроме того, наличие ШСВ позволяет отказаться от установки разъединителей, шунтирующих секционные реакторы.
Операции по переводу присоединений с одной секции шин на другую, а также при ремонте сборных шин и аппаратуры 6-10 кВ должны проводиться в определенном порядке. Рассмотрим, например, порядок операций при выводе в ремонт секции рабочей системы шин. При этом необходимо все присоединения этой секции перевести с рабочей
на резервную систему шин. Для этого прежде всего надо проверить исправность последней, т. е. провести ее опробование, что обычно осуществляют с помощью ШСВ, реже - с помощью секционного выключателя. Включая ШСВ, ставят резервную систему шин под напряжение, и если на резервной системе шин существует КЗ, ШСВ отключается от устройств релейной защиты.
В настоящее время опробование резервной системы шин производится с использованием защиты шин соответствующей секции. Если резервная система шин исправна, начинают поочередный перевод присоединений секции с рабочей на резервную систему шин, для чего включают шинный разъединитель резервной системы шин переводимого присоединения и затем отключают шинный разъединитель рабочей системы шин этого же присоединения. Эта операция безопасна для персонала, так как при включенном ШСВ ножи и неподвижные контакты разъединителей находятся под одинаковым напряжением. Чтобы при переводе присоединения избежать разрыва его разъединителем тока нагрузки, предусмотрена блокировка, запрещающая отключение одного из разъединителей при отключенном втором разъединителе данной цепи, если выключатель данного присоединения включен. По окончании перевода всех цепей (потребителей, источников питания и секционных выключателей) на резервную систему шин отключаются ШСВ и его разъединитель со стороны выводимой в ремонт секции. Следует отметить, что перед началом перевода присоединений с одной системы шин на другую необходимо предварительно снять оперативный ток с ШСВ и вывести его защиту из действия.
Рассмотренная схема кроме указанных выше преимуществ имеет и недостатки, основной из которых - использование шинных разъединителей в качестве оперативных элементов, что несмотря на наличие блокировок может привести к короткому замыканию на шинах при ошибочных действиях персонала. Недостатками схемы являются также увеличение числа шинных разъединителей, усложнение конструкции распределительного устройства.
Как и в схемах с одиночной секционированной системой шин, при числе секций, большем трех, рабочая секционированная система шин замыкается в кольцо.
Двойная секционированная система шин с фиксированным распределением присоединений. На рис. 5 показана схема двойной системы шин 10 кВ. Эта схема применяется для надежного питания собственных нужд электростанции.


Рис. 5. Схема электрических соединений двойной системы шин 10 кВ с фиксированным распределением присоединении

Генератор и все отходящие потребительские линии, а также рабочий трансформатор собственных нужд (а при напряжении 6 кВ - линия питания собственных нужд) присоединяются к рабочей системе шин, а к резервной системе шин присоединяются трансформатор связи с системой и резервный источник питания собственных нужд - трансформатор или линия. Шиносоединительный выключатель одной рабочей секции в нормальном режиме включен, и обе системы шин находятся под напряжением, а ШСВ других секций отключены.
Селективное отключение при КЗ только поврежденной системы шин (рабочей или резервной) обеспечивается специальными схемами релейной защиты.



Понравилась статья? Поделитесь ей