Контакты

Как сделать катер на радиоуправлении. Радиоуправляемый катер своими руками: как устроен, как сделать и правильно использовать

Мы уже рассказывали о самодельном катере для завоза приманки, в той статье давалась подборка электроники и рассказывалось об изготовлении. Если вы хотите сделать такой катер своими руками, то перейдите на статью Самодельный радиоуправляемый катер для завоза прикормки .

В этой статье мы поговорим о функциях такого радиоуправляемого катера.

Первое, что должен уметь катер – это передвигаться по водоему и сбрасывать груз прикормки.

Фактически, для этого можно доработать практически любой радиоуправляемый катер, установив на него дополнительную сервомашинку, которая мудет опрокидывать короб с рыболовной приманкой.

На видео ниже идет тестирование самодельного катера для рыбалки в ванной.

Кроме завоза приманки, катер можно использовать для завоза крючков удочки или закидушки. Для этого он оборудован двумя «отцепами». Управлять отцепами можно с помощью правого стика на передатчике. Механизация отцепов выполнена с помощью тех же сервомашинок.

Движение правого стика вниз – опрокидывает кузов с прикормкой для рыбы.

Такое управление дает возможность за один заход не только завести приманку, но и крючки в пару разных мест водоема.

Не смотря на достаточно простой вид, такой рыбацкий катер для завоза приманки может очень сильно облегчить рыбалку. При этом его стоимость, при учете того, что корпус корабля изготавливается самостоятельно, не велика. В спец магазинах катера для рыбалки продаются по цене начиная от 800-1000$, а электронику для самодельного катера можно купить за 150$. Ссылки на начинку катера смотрите в статье про изготовление.

На испытаниях катер показал не большую скорость, из за недогруза (испытывался без груза прикормки) винт частично оказывался высунутым из воды и происходило «проскальзвание» винта в воздушно водяной смеси. Тем не менее, это не помешало самодельному рыболовному катеру для завоза приманки заплыть практически за границу видимости на воде.

Кстати. Сделать самодельный катер на радиоуправлении доступно даже ребенку! Посмотрите на видео ниже – двое ребят сделали подобный катер из остатков радиоуправляемого вертолета и потолочной плитки. Как можно увидеть на видео – это не помешало ему отправится в плавание.

Так что, если у вас есть желание иметь рыбацкий катер для завоза приманки, но не хочется платить за него много денег, то вы можете сделать его своими руками!

Еще про радиоуправляемые модели :

- Делаем квадрокоптер из линеек.

- Изготовление катера для прикормки своими руками.

- Изготовление квадрокоптера из подручных материалов.

- Делаем модель радиоуправляемой яхты за один вечер.

- Как сделать простую радиоуправляемую модель самолета.

- из такого конструткора можно собирать самодельные радиоуправляемые модели автомобилей.

Коля комментирует:

Весьма интересно. Надо будет попробовать сделать такой катерок. Не для рыбалки, а так, погонять по водоему.

Приветствую, мозгочины! Сегодня расскажу вам, как я своими руками создал Arduino-поделку — радиоуправляемый катер с опцией автопилота.

По сути, это мозгоруководство о создании автопилота на микроконтроллере Arduino, который можно установить в любую модель, тем самым превратив ее в радиоуправляемую поделку , даже не просто поделку, а автономного дрона. На сборку данной мозгоподелки меня вдохновили такие робо-катера как UBC Sailbot и Scout, который кстати, совершил успешный трансатлантический рейс.

Весь процесс создания катера с автопилотом занял у меня более года, и за это время я приобрел много знаний по теории автопилотирования и схемотехники, и думаю, что в один прекрасный день я применю их на настоящем катере моего отца.

Окончательная, завершенная версия катера с автопилотом основывается на решениях трех прототипов, первый из которых самый простой по схеме и коду, остальные более доработанные. Финальный катер представляет собой полнофункциональную радиоуправляемую модель, которая успешно плавает по глади пруда, что я постарался отобразить на фото. Эта версия хотя и окончательная, но может быть доработана и усовершенствована, как с точки зрения кода, лодку нужно научить следовать маршруту, а не просто от точки к точке, так и с точки зрения электроники, можно поставить акселерометр, чтобы он компенсировал наклон от компаса.

Шаг 1: Видеопрезентация

Небольшое видео обозначит направление этого мозгопроекта :

Шаг 2: Прототип 1

Первый катер, то есть прототип 1, был самый простой по исполнению и должен был уметь:

  • считывать GPS-координаты своего положения
  • считывать азимут с компаса
  • управлять сервоприводом руля
  • использовать руль для следования курсу

А так же на нем я тестировал формулы маневрирования для создания действующего автопилота. Основой прототипа 1 был микроконтроллер Arduino Uno, в финальной версии я использовал ATmega328.

Считывание GPS-координат

На первом прототипе я установил самый дешевый GPS-модуль который смог достать, это UBlox PCI-5. Для его монтажа нужно было лишь припаять четыре провода к задней стороне платы, подсоединить их к Arduino и прикрепить антенну. Для обработки поступающих данных я использовал библиотеку TinyGPS ++ , которая позволила мне получить координаты текущего положения, скорость, направление и много другого! Подробнее о установке этого модуля, который кстати я использовал и в прототипе 2, вот в этом моем мозгоруководстве .

Считывание азимута

Чтобы получать данные с компаса я использовал HMC5883L , который легко подключается к микроконтроллеру через I2C. Как именно он устанавливается и как с ним работать хорошо описано и

Управление сервоприводом руля

Контролировать сервопривод руля с помощью Arduino очень легко , но если только вы не используете библиотеку SoftwareSerial, которая нужна для TinyGPS ++, и которая конфликтует с одним таймеров Arduino! Запущенная SoftwareSerial мешает работе любого сервопривода использующего стандартную библиотеку, и решением данного мозгоконфликта является использование библиотеки PWM Servo library.

Формулы алгоритма автопилотирования

В прототипе 1 я применил несколько функций, которые позднее станут критичными. Эти функции используют формулу Хаверсина для расчета таких параметров как расстояние между двумя точками, направления от одной точки к следующей и реальный азимут по данным компаса. Более подробно об этих формулах в этой статье .

Сборка компонентов

Компоненты первого прототипа я разместил на деревянном каркасе (см. фото), и теперь, зная положение этого каркаса-автопилота и сравнивая с заданным, можно поворачивать руль и сохранять заданный маршрут. Это будет полезно в дальнейшем для навигации по GPS-координатам.

Шаг 3: Прототип 2

Довольный результатами первой поделки я решил создать прототип 2 с программными доработками автопилота. Целями для второй самоделки были:

  • плавание по заданным GPS-кооддинатам
  • работа автопилота от аккумулятора
  • тестирование и запись данных автопилота

Конструкция автопилота также претерпела некоторые изменения — была добавлена макетная плата ProtoSheild, на которую я установил сам Arduino и компас. Все компоненты смонтировал на фанерное основание и “упаковал” в пластиковый контейнер.

В этот же контейнер я попытался добавить приемник дистанционного управления, но безуспешно из-за нехватки свободного места.

Плавание по заданным GPS-кооддинатам

Код для Arduino я написал таким образом, чтобы он поворачивал руль по направлению к следующей точке заданного маршрута: используя GPS-координаты для вычисления соотношений последующих точек и сравнивая их с компасом, вычисляется поворот руля. Если вычисленное значение правее, на 90 градусов, то руль повернется на 60 градусов. Если вычисленное значение левее, на 270 градусов, то руль повернется на 120 градусов. Если же значение находится между 330 и 30 градусами, то руль будет поворачиваться экспоненциально сохраняя положение прямо.

Все это будет происходить в цикле, примерно так (этот код обобщенный):

While(distanceInMeters(gpslat, gpslong, waypointlat, waypointlong) < 5) { int bearing = GetBearing(); int heading = GetHeading(gpslat, gpslong, waypointlat, waypointlong); bearing = RealBearing(gpslat, gpslong, bearing); RudderTurn(RudderAngle(bearing, heading)); }

Пояснение кода таково: если расстояние между катером и следующей точкой более 5 метров, то складывая азимут катера и азимут следующей точки, получается действительный азимут, оба азимута посылаются функции the RudderTurn function, которая вычисляет нужный угол поворота и соответственно поворачивает мозгоруль .

Установка аккумулятора

Запитать Arduino от аккумулятора довольно просто. Для этого на микроконтроллере есть контакт Vin, и на него можно подать до 20В постоянного тока. У меня была литиевая батарея на 12.6В, к которой я припаял разъем и подключил ее к контакту Vin на Arduino.

Шаг 4: Тестирование прототипа 2

Для того чтобы проверить прототип в действии я установил два светодиода, первый из которых будет светиться когда зафиксируется GPS-координата, а второй, когда будет достигнута эта точка.

Испытание прототипа

Пробы своего автопилота я проводил на местном поле. К своему ноутбуку я подключил автопилот и запустил последовательный монитор (часть программного обеспечения Arduino), который записывал GPS-координаты все время следования по заданным точкам. Я пользовался рулем который направлял меня к следующей точке, и я поворачивал, словно это был мозгокатер.

На представленных фото обозначен маршрут тестов. Если я оказывался ближе чем 5 метров к нужной точке, то автопилот переключался и начинал навигацию к следующей точке. В процессе этих тестов код поделки претерпел довольно много незначительных изменений.

Для конвертации последовательного текста в путь Google Earth, я импортировал текст в Excel, сохранив файл и далее следуя указаниям Earthpoint , преобразовывал файл в формат KML.

Шаг 5: Первое судно

Судно, которое я сделал первым для этого проекта, было больше экспериментом, чем действующим прототипом. Просто я хотел посмотреть, смогу ли я создать функционирующий аэроглиссер самостоятельно или придется покупать.

Почти все детали судна, включая палубу, вырезаны из пеноматериала. Для тяги мотор сначала я взял щеточный, но потом заменил его двигателем без щеток с пропеллером 5х3. Этот 9-ти граммовый сервомотор я смонтировал на задней панели, а для проводов идущих к нему в контейнере высверлил отверстие. Но в конце концов, эта самоделка не отправилась в плавание… Дело в том, что система ESC, которую я планировал использовать сгорела во время инцидента другого мозгопроекта , да еще GPS модуль наотрез отказался работать на поверхности пруда.

Шаг 6: Модифицированный катер

А теперь снова вернемся к чертежам катера! На известном онлайн-ресурсе я купил новый катер. В комплект к нему входили никель-металл-гидридный (Ni-MH) аккумулятор на 7.4В, зарядное устройство, передатчик и плата приемника. С передатчиком возникли небольшие проблемы — нужно было найти 12 батареек АА, и я остался разочарованным не работающим катером. Но, для проекта это не критично и я продолжил.

Я выпаял два Н-канальных MOSFET-транзистора из цепи приемника, они пригодятся позднее. После этого обрезал все провода и загерметизировал горячим клеем все щели и трещинки, которые нашел в корпусе катера.

Два двигателя катера имели сложную систему охлаждения — очень шумный пропеллер, который нагнетал воздух на двигатели, еще на моторах стояли шунтирующие конденсаторы, и оба этих момента работали в мою пользу. А вот для маленького переключателя на верхней стороне мозгокатера я не нашел более достойного применения.

Далее встал вопрос безопасного размещения прототипа и для его решения я использовал небольшую досочку к низу которой, в районе двигателей, приклеил деревянную палочку, а еще к доске и к корпусу катера приклеил застежку-липучку, удерживающей силы которой хватит для “спасения” автопилота при переворачивании катера.

Шаг 7: Прототип 3

Одним из недостатков двух предыдущих прототипов была медленная скорость обновления, то есть скорости реакции. Руль недостаточно быстро реагировал на изменение маршрута и этот момент был включен в список целей и задач нового прототипа:

  • увеличение скорости реакции автопилота
  • добавление контроллеров моторов
  • программирование совместной работы двигателей
  • установка приемника

Увеличение скорости реакции

Единственный минус библиотеки TinyGPS ++ это медленность. Проблема в том, что Arduino Uno не может выполнять две вещи одновременно (в принципе может, на деле — нет). Простым решением может стать еще один микроконтроллер Arduino, который с помощью библиотеки TinyGPS ++ будет обрабатывать данные GPS, а затем отправлять параметры на первый микроконтроллер автопилота. Но у меня не было еще одного Arduino.

Arduino Uno это, по существу, чип ATmega328 и еще несколько дополнительных компонентов. Зная это можно создать свой собственный Arduino на макетной плате. И для этого есть хорошее мозгоруководство .

К собранному самостоятельно Arduino, так же как и “старый” модуль, я подключил новый GPS-модуль Ublox NEO-6M. Для программинга самодельного Arduino использовал библиотеку Bill Porter’s Easy Transfer library , а “связал” оба микроконтроллера одиночным проводом, то есть односторонним последовательным соединением. Этот самодельный Arduino повысил скорость реакции автопилота с 4 Гц до 50 Гц!

Добавление контроллеров двигателей

Мне очень понравилась плата ProtoSheild для Arduino Uno, которую я использовал, но оказалось, что она не имеет достаточного пространства для крепления двух контроллеров двигателей. Поэтому я убрал эту мини-плату, и поставил другую, больших размеров.

Электроцепь контроллеров двигателей проста: МОП-транзистор (MOSFET), с помощью ШИМ, контролирует среднее напряжение, идущее к двигателю. Резистор 1кОм ограничивает силу тока чтобы не перегорел Arduino, а резистор 10кОм удерживает MOSFET закрытым, когда отсутствует входящий сигнал.

Программирование взаимодействия моторов

У данного катера отсутствует штурвал, то есть руль, и вместо него для управления используется два мотора. Их то я и решил задействовать, а не устанавливать сервомотор для управления. Контроллеры моторов я уже собрал, осталось только запрограммировать Arduino для управления этими контроллерами.

Программирование я начал с написания макета программы в начал с Visual Studio. По мере написания я отладил код, и в конце концов добился взаимодействия двигателей. Оставалось только переделать код с VS на Arduino, но это не трудно, так как языки C # и C ++ очень близки.

Установка приемника радиоуправления

На прототип я смонтировал приемник ДУ для ручного управления самоделкой . Это тоже довольно просто сделать, нужно лишь считывать входящие значения функцией pulseIn и “научить” реагировать автопилот на эти значения.

Испытание прототипа

Прототип автопилота я установил внутри катера, подключил двигатели к контроллерам и запрограммировал маршрут плавания по местном пруду. После прохождения трех точек, поделка перестала работать и “сгасла”. Оказалось, что высокое напряжение от аккумулятора (12 В) “спалило” регуляторы напряжения 5 В.





Всем доброго времени суток дорогие друзья! В сегодняшней статье я бы вам хотел вам показать, как сделать лодку на радиоуправлении. Эта самоделка отлично подойдет для тех, кто хочет заняться лодочным моделизмом, но модели лодок стоят довольно дорого. Собрать свою модель будет не намного дешевле, но куда интереснее, чем просто купить готовую лодку в магазине. Ну да ладно, хватит длинных предисловий, погнали!

И так, для данной самоделки нам понадобится:
- лист ABS пластика.
- электродвигатели 180 класса 2шт.
- лодочные пропеллеры.
- переходник для вала электродвигателя.
- электроды подходящего диаметра.
- алюминиевые трубки, внутренний диаметр которых равен внешнему диаметру электродов.
- 2s 7.4v Lipo аккумулятор.
- немного провода.
- электроника от старого радиоуправляемого вертолёта.
- алюминиевая пластина.
- винты.

Из инструментов нам также понадобится:
- Линейка.
- маркер.
- канцелярский нож.
- терма клей.
- дрель.
- отвёртка.
- плоскогубцы.
- смазка.
- паяльник.

Для начала нам потребуется сделать корпус самой лодки. В качестве материала для корпуса лучше всего взять толстые листы ABS пластика. На листе пластика при помощи линейки и маркера следует отметить прямоугольник длиной 25см и шириной 11.5см.








После того как прикинули размеры на листе пластика, следует поделить верхнюю часть на прямоугольники, так как это показано на фото ниже. Это нужно для того чтобы более симметрично начертить нос нашей лодки. И пытаемся как можно точнее сделать нос лодки, но если у вас не получится, то можно скачать и распечатать фотошаблонов в интернете.




С помощью канцелярского ножа отрезаем прямоугольник и отрезаем от прямоугольника лишнее. Так чтобы у нас получилось, что то похожее на лодку. Затем тем же канцелярским ножом делим нашу заготовку пополам.


Канцелярским ножом срезаем угол на заготовках, которые только что получили. Это нужно для того, чтобы их можно было максимально плотно склеить под углом.


Затем срезаем две заготовки так, чтобы у вас получилось, так как на фото ниже.


Наносим терма клей на заготовки и склеиваем их между собой. Из того же пластика следует вырезать две заготовки похожие на трёх угольники. И приклеиваем их к лодке для того чтобы усилить корпус. На протяжение всей сборки корпуса старайтесь не жалеть терма клей и проклеивать все очень хорошо, это нужно для герметичности всей конструкции.










Наносим терма клей на указанное место и сгибая пластик склеиваем два конца между собой.


Из используемого пластика следует вырезать две полоски такой шириной, чтобы они были не выше задней стенки. И приклеиваем на те места, что указаны на фото.










Для следующего шага нам нужно изготовить некую «мотораму» на которой будут крепиться электродвигатели. Для моторамы нам понадобится какая-нибудь металлическая пластина, автор самоделки решил вырезать её из алюминиевого профиля. Пластина должна помещаться в лодку так чтобы она там не болталась. На самой алюминиевой пластине следует высверлить два больших отверстия для валов электродвигателей и четыре маленьких для крепления электродвигателей.




Закрепляем электродвигатели на пластине. Крепиться электродвигатели к пластине будут при помощи винтового соединения. После чего на валы электродвигателей устанавливаем переходники.






Берём нашу мотораму с электродвигателями и приклеиваем её в заднюю часть лодки так, чтобы расстояние между задней стенкой и переходником составляло 1-2 см.




Для следующего шага нам понадобится электрод. Электрод в данной конструкции будет осью привода, для этого нам надо убрать изоляцию с электрода. Убирать изоляцию с электрода очень удобно пассатижами. После того как убрали изоляцию с электрода нужно проверить влезет ли он в заранее заготовленную трубку, если да, то продолжаем.








Взяв пассатижи, делим электрод на две одинаковые оси. Длина осей должна быть чуть больше трубок. Затем надеваем лодочные пропеллеры на оси так, чтобы крутились они в разные стороны, и через трубки вставляем их в лодку. Но перед тем как вставить оси в лодку, в задней стенке следует проколоть два отверстия для них.








Места, где были проделаны отверстия и просунуты трубки, следует загерметизировать терма клеем, для того чтобы вода не попадала туда.




Сняв оси с пропеллерами, следует промазать какой-либо смазкой трубки, где они стоят. Если не смазывать то в трущихся местах будет сильный нагрев, что приведёт, к расширению метала, увеличению сопротивления, что в свою очередь может повлиять на нагрузку электронной системы лодки.


Припаиваем провода к электродвигателям. А провода от электродвигателей припаиваем к плате управления вертолета, где были припаяны вертолётные двигатели. Про полярность не сказать не чего, она подбирается методом тыка. Главное чтобы после включения при добавлении газа электродвигатели вращались в противоположные стороны, а лодка двигалась вперёд. А при повороте на право, левый двигатель добавлял обороты, а левый сбавлял.










Приклеиваем аккумулятор к корпусу терма клеем. Вырезав квадратик из используемого материала, приклеим и его с помощью терма клея к плате управления и этот бутерброд нужно приклеить также к корпусу.








Изготовим крышу для лодки, повторяя действия по пошаговым фото. И украсим лодку тем, что у вас есть.

Радиоуправляемый катер для рыбалки - это настоящая находка, которую может соорудить любой мастер собственными руками. С его помощью осуществляется завоз прикормки на дальние расстояния. Купить такое изделие можно в специализированном магазине, но уже после нескольких походов на рыбалку оно сломается. Естественно, есть очень качественные модели, но их стоимость тоже впечатляет. Лучше соорудить катер на радиоуправлении самостоятельно, так можно быть уверенным в его исправности, да и запчастей понадобится немного.

Нельзя сказать, что собрать такое небольшое судно очень уж просто. Но если соблюдать инструкцию, то для изготовления самоделки понадобится всего день.

Для начала следует собрать необходимый материал и инструмент:
  • стеклопластик, фанера или другой материал, из которого можно будет вырезать корпус кораблика;
  • силовой каркас из алюминиевого профиля;
  • горячий клей (или другое средство для фиксации частей, которое будет устойчивым к воздействию воды);
  • монтажная пена;
  • двигатель;
  • регуляторы;
  • аппаратура для осуществления управления корабликом;
  • аккумулятор, благодаря которому будет работать моторчик;
  • провода и разъемы для подключения и соединения всех компонентов схемы;
  • паяльник;
  • дейдвудная труба;
  • вал с винтом, благодаря которому будет осуществляться передвижение катера;
  • ножовка или электролобзик.

Конструкция аппарата может быть абсолютно любой. Главное, чтобы она была действенной. Для этого важно правильно рассчитать водоизмещение этого маленького судна.

Вообще, такая небольшая лодка считается настоящей находкой, ведь рыбаку не придется думать, как доставить прикормку на большое расстояние. Кроме того, к ней можно прикрепить эхолот и обследовать водоем в поисках наиболее рыбного места.

Радиоуправляемый кораблик для рыбалки своими руками сделать нетрудно, нужно просто соблюдать последовательность выполнения работ:

  1. Изготовление корпуса. Если используется фанера, то дополнительно придется облицевать ее стеклотканью и обмазать эпоксидной смолой. Это поможет защитить материал от гниения. Вырезать фанеру или стеклопластик необходимо по предварительно нарисованной или скачанной схеме. Для того чтобы герметизировать все швы, необходима монтажная пена.
  2. Установка силового каркаса. Благодаря ему нагрузка на корпус распределяется равномерно, и он остается на плаву. Нос кораблика можно заполнить пеной, которая гарантирует его непотопляемость.
  3. Монтаж трубы с винтом. Лопасти движущего компонента остаются внутри корпуса, поэтому они не запутаются в водорослях, не поранят рыбу, а также не зацепятся за корягу. Отверстие трубы дополнительно нужно закрыть решеткой.
  4. Обустройство электронной части. Вот теперь устанавливается двигатель, дейдвудная труба, вал с муфтой и гребной винт. Чтобы рыболовный катер мог плыть в заданном направлении и поворачиваться, нужно оснастить его регуляторами.
  5. Монтаж серводвигателей для открывания емкостей с прикормкой. Они должны находиться в корпусах, внутрь которых не попадает пыль и влага.
  6. Установка аккумуляторов.

Для управления изделием лучше выбрать пятиканальную радиосистему, которая устанавливается на игрушки.

Как видно, кораблик для рыбалки своими руками делается быстро.

Кроме того, есть другие полезные рекомендации, которые помогут не только самостоятельно сконструировать изделие, но и сделать его долговечным:
  • лучше выбрать не фанеру, а стеклопластик, ведь он гораздо легче и не требует дополнительной защиты от влаги, так как не поддается ее негативному воздействию (этот материал также отличается высокой прочностью);
  • выбранный аккумулятор должен обладать достаточной емкостью, чтобы катер не заглох посреди водоема, но также важно обратить внимание и на вес компонента (он не должен слишком сильно утяжелять конструкцию);
  • катер можно дополнительно оснастить подсветкой, навигатором - это даст возможность осуществлять ночную ловлю;
  • для того чтобы изделие не ушло под воду, необходимо правильно рассчитать водоизмещение, которое колеблется в пределах 2,5-12 литров (тут влияет расстояние, на которое уплывает судно, количество подкормки, масса необходимого оборудования).

Ловля рыбы при помощи радиоуправляемого катера - настоящее удовольствие. Но чтобы кораблик уплывал на дальние расстояния, система управления должна быть рассчитана на это. Радиус ее действия не должен быть меньше 50 м.

Да действительно, обзор несколько не по сезону, но комплект интересный, работоспособный и внимания заслуживает. Хотя, конечно, стоит полностью отдавать себе отчёт, что эта модель не создана для рекордов, это не более чем забавная игрушка-самосборка.
В обзоре несколько фотографий по этапам сборки, плата поближе и видео из ванной
Прямой необходимости приобретать подобное у меня не было; я просто ползал по просторам магазинов с целью прикупить чего-нибудь, чтоб вечер скоротать, руки приложить и отвлечь сына (+ 8 лет) от планшета.
Данный лот показался мне подходящим, а цена приемлемой и я сделал заказ. Ждать пришлось долго, около двух месяцев, одно радует посылку курьер принёс на дом.


Все детали были распределены в два кулька, а они уже в свою очередь помещались в пенопластовый короб (на фото он не попал). И хотя доставку осуществляла курьерская служба, посылка была всмятку, однако упаковка своё дело сделала, спасла содержимое.
Сын торопился приступить к сборке, поэтому фотографий деталей россыпью не будет, не обессудьте!


И так, основой корпуса лодки служит формованный кусок вспененного ПВХ, сквозь кормовую часть которого шпильками закреплены текстолитовые пластины, служащие основанием всей конструкции. Пластин две: на днище и палубе. Крепёжные отверстия в них уже просверлены, поэтому для сборки понадобится только тоненькая крестовая отвёртка. Винты заходят плотно, я бы даже сказал с натягом, так что определённая прочность в конструкции присутствует.
На фото выше, как Вы уже догадались, представлена подводная часть днища на этапе сборки узла гребных винтов (левый ещё не установлен). Здесь видно, что в угоду простоте модель плоскодонная и не имеет руля. Маневрирование осуществляется винтами, вращение которым передаётся по гибкому пружинному приводу.


Что касается надводной части; здесь расположены электрические двигатели и зубчатая передача понижающего редуктора, к валу которого и присоединяется второй конец пружины.


Ну и завершает всю конструкцию плата контроллера управления, крепящаяся единственным винтом на стойке.


Даже беглого взгляда достаточно, что бы понять, что культура производства при монтаже радиоэлектронных компонентов отсутствует вообще.


Это не механический изгиб. Это пайка такая.
С оборотной стороны тоже подобная картина.
Но как ни странно, всё работает.



Что касается самого контроллера, то я в этом ничего не смыслю, но сфотографировать его всё же удалось.
Маркировка TXM 8A978S ZYF22AC


После подключения батарейного блока (4*AA) и коммутации необходимых проводов можно переходить к ходовым испытаниям. Центр тяжести немного смещён к корме, однако этот момент легко отрегулировать прикинув местоположение батареек на палубе. Хотя я намеренно сделал именно таким образом, что бы нос волной не захлестывало.


Полный вперёд! По моим оценкам скорость около 0,5 метра в секунду. Сколько это в узлах не знаю)


Режим хода «полный назад!» даже визуально осуществляется прилично медленнее. По всему ясно, в этом сказывается изгиб винтов и форма основания.
А вот в плане элементарной манёвренности лодка оказалась относительно проворной. Напомню, повороты осуществляются винтами, а значит максимальная угловая скорость будет достигнута при разнонаправленном вращении винтов. Пульт и контроллер такой режим осуществить способны.


Пульт управления поставляется уже в собранном виде. Имеет четыре кнопки объединённые попарно. Левый/правый канал и движение назад/вперёд, соответственно. Питается от двух батареек AA.


Антенна представляет из себя подпружиненный отрез проволоки единички. Заявленную дальность действия в три метра я подтверждаю, на этом расстоянии приём стабильный. На расстоянии до четырёх метров сопряжение обрывается и зависит от взаимного расположения антенн приёмника и передатчика. Более четырёх метров сигнала нет или реагирует на единичные команды.

Комплект самодостаточен. Есть всё необходимое для сборки модели. Даже отрез двухстороннего скотча для крепежа батарейного блока. А несколько винтиков-шпунтиков вообще лишних (запасных) осталось.
+ Комплект исправен и работоспособен. Полностью соответствует описанию продавца и всем заявленным характеристикам.
+ Кроме всего прочего в наличии простенькая, но толковая пошаговая инструкция по сборке.

скан фрагмента инструкции

1-2-3


4-5-6


± Неаккуратная сборка электронных компонентов. Да и вообще, внешний вид готовой игрушки далёк от эстетичного. ИМХО, пара стяжек для кабелей в комплект прям просятся.
± Хороший сервис в магазине. Курьер принёс посылку на дом, по предварительной договорённости.

Вся сборка осуществляется одним единственным инструментом - тоненькой крестовой отвёрткой. И не положить её в комплект, ну это, извините, - жлобство).
Ну а так, по правде сказать, игрушкой мы с сыном остались довольны: и время провели, и побаловались, и планов настроили…

Теперь прощаюсь. Быть добру!

Планирую купить +15 Добавить в избранное Обзор понравился +45 +59

Понравилась статья? Поделитесь ей