Контакты

Найти двугранный угол образованный пересечением заданных плоскостей. Угол между плоскостями. Перпендикулярность плоскостей


Эта статья посвящена углу между плоскостями и его нахождению. Сначала приведено определение угла между двумя плоскостями и дана графическая иллюстрация. После этого разобран принцип нахождения угла между двумя пересекающимися плоскостями методом координат, получена формула, позволяющая вычислять угол между пересекающимися плоскостями по известным координатам нормальных векторов этих плоскостей. В заключении показаны подробные решения характерных задач.

Навигация по странице.

Угол между плоскостями - определение.

Приведем рассуждения, которые позволят постепенно подойти к определению угла между двумя пересекающимися плоскостями.

Пусть нам даны две пересекающиеся плоскости и . Эти плоскости пересекаются по прямой, которую обозначим буквой c . Построим плоскость , проходящую через точку М прямой c и перпендикулярную к прямой c . При этом плоскость будет пересекать плоскости и . Обозначим прямую, по которой пересекаются плоскости и как a , а прямую, по которой пересекаются плоскости и как b . Очевидно, прямые a и b пересекаются в точке М .


Легко показать, что угол между пересекающимися прямыми a и b не зависит от расположения точки М на прямой c , через которую проходит плоскость .

Построим плоскость , перпендикулярную к прямой c и отличную от плоскости . Плоскость пересекают плоскости и по прямым, которые обозначим a 1 и b 1 соответственно.

Из способа построения плоскостей и следует, что прямые a и b перпендикулярны прямой c , и прямые a 1 и b 1 перпендикулярны прямой c . Так как прямые a и a 1 лежат в одной плоскости и перпендикулярны прямой c , то они параллельны. Аналогично, прямые b и b 1 лежат в одной плоскости и перпендикулярны прямой c , следовательно, они параллельны. Таким образом, можно выполнить параллельный перенос плоскости на плоскость , при котором прямая a 1 совпадет с прямой a , а прямая b с прямой b 1 . Следовательно, угол между двумя пересекающимися прямыми a 1 и b 1 равен углу между пересекающимися прямыми a и b .


Этим доказано, что угол между пересекающимися прямыми a и b , лежащими в пересекающихся плоскостях и , не зависит от выбора точки M , через которую проходит плоскость . Поэтому, логично этот угол принять за угол между двумя пересекающимися плоскостями.

Теперь можно озвучить определение угла между двумя пересекающимися плоскостями и .

Определение.

Угол между двумя пересекающимися по прямой c плоскостями и – это угол между двумя пересекающимися прямыми a и b , по которым плоскости и пересекаются с плоскостью , перпендикулярной к прямой c .


Определение угла между двумя плоскостями можно дать немного иначе. Если на прямой с , по которой пересекаются плоскости и , отметить точку М и через нее провести прямые а и b , перпендикулярные прямой c и лежащие в плоскостях и соответственно, то угол между прямыми а и b представляет собой угол между плоскостями и . Обычно на практике выполняют именно такие построения, чтобы получить угол между плоскостями.

Так как угол между пересекающимися прямыми не превосходит , то из озвученного определения следует, что градусная мера угла между двумя пересекающимися плоскостями выражается действительным числом из интервала . При этом, пересекающиеся плоскости называют перпендикулярными , если угол между ними равен девяноста градусам. Угол между параллельными плоскостями либо не определяют совсем, либо считают его равным нулю.

Нахождение угла между двумя пересекающимися плоскостями.

Обычно при нахождении угла между двумя пересекающимися плоскостями сначала приходится выполнять дополнительные построения, чтобы увидеть пересекающиеся прямые, угол между которыми равен искомому углу, и после этого связывать этот угол с исходными данными при помощи признаков равенства, признаков подобия, теоремы косинусов или определений синуса, косинуса и тангенса угла. В курсе геометрии средней школы встречаются подобные задачи.

Для примера приведем решение задачи С2 из ЕГЭ по математике за 2012 год (условие намерено изменено, но это не влияет на принцип решения). В ней как раз нужно было найти угол между двумя пересекающимися плоскостями.

Пример.

Решение.

Для начала сделаем чертеж.

Выполним дополнительные построения, чтобы «увидеть» угол между плоскостями.

Для начала определим прямую линию, по которой пересекаются плоскости АВС и BED 1 . Точка В – это одна из их общих точек. Найдем вторую общую точку этих плоскостей. Прямые DA и D 1 E лежат в одной плоскости АDD 1 , причем они не параллельны, а, значит, пересекаются. С другой стороны, прямая DA лежит в плоскости АВС , а прямая D 1 E – в плоскости BED 1 , следовательно, точка пересечения прямых DA и D 1 E будет общей точкой плоскостей АВС и BED 1 . Итак, продолжим прямые DA и D 1 E до их пересечения, обозначим точку их пересечения буквой F . Тогда BF – прямая, по которой пересекаются плоскости АВС и BED 1 .

Осталось построить две прямые, лежащие в плоскостях АВС и BED 1 соответственно, проходящие через одну точку на прямой BF и перпендикулярные прямой BF , - угол между этими прямыми по определению будет равен искомому углу между плоскостями АВС и BED 1 . Сделаем это.

Точка А является проекцией точки Е на плоскость АВС . Проведем прямую, пересекающую под прямым углом прямую ВF в точке М . Тогда прямая АМ является проекцией прямой ЕМ на плоскость АВС , и по теореме о трех перпендикулярах .

Таким образом, искомый угол между плоскостями АВС и BED 1 равен .

Синус, косинус или тангенс этого угла (а значит и сам угол) мы можем определить из прямоугольного треугольника АЕМ , если будем знать длины двух его сторон. Из условия легко найти длину АЕ : так как точка Е делит сторону АА 1 в отношении 4 к 3 , считая от точки А , а длина стороны АА 1 равна 7 , то АЕ=4 . Найдем еще длину АМ .

Для этого рассмотрим прямоугольный треугольник АВF с прямым углом А , где АМ является высотой. По условию АВ=2 . Длину стороны АF мы можем найти из подобия прямоугольных треугольников DD 1 F и AEF :

По теореме Пифагора из треугольника АВF находим . Длину АМ найдем через площадь треугольника АBF : c одной стороны площадь треугольника АВF равна , с другой стороны , откуда .

Таким образом, из прямоугольного треугольника АЕМ имеем .

Тогда искомый угол между плоскостями АВС и BED 1 равен (заметим, что ).

Ответ:

В некоторых случаях для нахождения угла между двумя пересекающимися плоскостями удобно задать Oxyz и воспользоваться методом координат. На нем и остановимся.

Поставим задачу: найти угол между двумя пересекающимися плоскостями и . Обозначим искомый угол как .

Будем считать, что в заданной прямоугольной системе координат Oxyz нам известны координаты нормальных векторов пересекающихся плоскостей и или имеется возможность их найти. Пусть - нормальный вектор плоскости , а - нормальный вектор плоскости . Покажем, как найти угол между пересекающимися плоскостями и через координаты нормальных векторов этих плоскостей.

Обозначим прямую, по которой пересекаются плоскости и , как c . Через точку М на прямой c проведем плоскость , перпендикулярную к прямой c . Плоскость пересекает плоскости и по прямым a и b соответственно, прямые a и b пересекаются в точке М . По определению угол между пересекающимися плоскостями и равен углу между пересекающимися прямыми a и b .

Отложим от точки М в плоскости нормальные векторы и плоскостей и . При этом вектор лежит на прямой, которая перпендикулярна прямой a , а вектор - на прямой, которая перпендикулярна прямой b . Таким образом, в плоскости вектор - нормальный вектор прямой a , - нормальный вектор прямой b .


В статье нахождение угла между пересекающимися прямыми мы получили формулу, которая позволяет вычислять косинус угла между пересекающимися прямыми по координатам нормальных векторов. Таким образом, косинус угла между прямыми a и b , а, следовательно, и косинус угла между пересекающимися плоскостями и находится по формуле , где и – нормальные векторы плоскостей и соответственно. Тогда вычисляется как .

Решим предыдущий пример методом координат.

Пример.

Дан прямоугольный параллелепипед АВСDA 1 B 1 C 1 D 1 , в котором АВ=2 , AD=3 , АА 1 =7 и точка E делит сторону АА 1 в отношении 4 к 3 , считая от точки А . Найдите угол между плоскостями АВС и ВЕD 1 .

Решение.

Так как стороны прямоугольного параллелепипеда при одной вершине попарно перпендикулярны, то удобно ввести прямоугольную систему координат Oxyz так: начало совместить с вершиной С , а координатные оси Ox , Oy и Oz направить по сторонам CD , CB и CC 1 соответственно.

Угол между плоскостями АВС и BED 1 может быть найден через координаты нормальных векторов этих плоскостей по формуле , где и – нормальные векторы плоскостей АВС и BED 1 соответственно. Определим координаты нормальных векторов.

Рассмотрим две плоскости р 1 и р 2 с нормальными векторами n 1 и n 2 . Угол φ между плоскостями р 1 и р 2 выражается через угол ψ = \(\widehat{(n_1; n_2)}\) следующим образом: если ψ < 90°, то φ = ψ (рис. 202, а); если ψ > 90°, то ψ = 180° - ψ (рис. 202,6).

Очевидно, что в любом случае справедливо равенство

cos φ = |cos ψ|

Так как косинус угла между ненулевыми векторами равен скалярному произведению этих векторов, деленному на произведение их длин, имеем

$$ cos\psi=cos\widehat{(n_1; n_2)}=\frac{n_1\cdot n_2}{|n_1|\cdot |n_2|} $$

и, следовательно, косинус угла φ между плоскостями р 1 и р 2 может быть вычислен по формуле

$$ cos\phi=\frac{n_1\cdot n_2}{|n_1|\cdot |n_2|} (1)$$

Если плоскости заданы общими уравнениями

А 1 х + B 1 y + C 1 z + D 1 = 0 и А 2 х + B 2 y + C 2 z + D 2 = 0,

то за их нормальные векторы можно взять векторы n 1 = (A 1 ; B 1 ; С 1) и n 2 = (A 2 ; B 2 ; С 2).

Записав правую часть формулы (1) через координаты, получим

$$ cos\phi=\frac{|A_1 A_2 + B_1 B-2 + C_1 C_2|}{\sqrt{{A_1}^2+{B_1}^2+{C_1}^2}\sqrt{{A_2}^2+{B_2}^2+{C_2}^2}} $$

Задача 1. Вычислить угол между плоскостями

х - √2 y + z - 2 = 0 и х+ √2 y - z + 13 = 0.

В данном случае A 1 .=1, B 1 = - √2 , С 1 = 1, A 2 =1, B 2 = √2 , С 2 = - 1.

По формуле (2) получаем

$$ cos\phi=\frac{|1\cdot 1 - \sqrt2 \cdot \sqrt2 - 1 \cdot 1|}{\sqrt{1^2+(-\sqrt2)^2+1^2}\sqrt{1^2+(\sqrt2)^2+(-1)^2}}=\frac{1}{2} $$

Следовательно, угол между данными плоскостями равен 60°.

Плоскости с нормальными векторами n 1 и n 2:

а) параллельны тогда и только тогда, когда векторы n 1 и n 2 коллинеарны;

б) перпендикулярны, тогда и только тогда, когда векторы n 1 и n 2 перпендикулярны, т. е. когда n 1 n 2 = 0.

Отсюда получаем.необходимые и достаточные условия параллельности и перпендикулярности двух плоскостей, заданных общими уравнениями.

Для того чтобы плоскости

А 1 х + B 1 y + C 1 z + D 1 = 0 и А 2 х + B 2 y + C 2 z + D 2 = 0

были параллельны, необходимо и достаточно, чтобы выполнялись равенства

$$ \frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2} \;\; (3)$$

В случае, если какой-либо из коэффициентов A 2 , B 2 , С 2 равен нулю, подразумевается, что равен нулю и соответствующий коэффициент A 1 , B 1 , С 1

Невыполнение хотя бы одного из этих двух равенств означает, что плоскости не параллельны, т. е. пересекаются.

Для перпендикулярности плоскостей

А 1 х + B 1 y + C 1 z + D 1 = 0 и А 2 х + B 2 y + C 2 z + D 2 = 0

необходимо и достаточно, чтобы выполнялось равенство

А 1 А 2 + B 1 B 2 + C 1 C 2 = 0. (4)

Задача 2. Среди следующих пар плоскостей:

2х + 5у + 7z - 1 = 0 и 3х - 4у + 2z = 0,

у - 3z + 1 = 0 и 2у - 6z + 5 = 0,

4х + 2у - 4z + 1 = 0 и 2х + у + 2z + 3 = 0

указать параллельные или перпендикулярные. Для первой пары плоскостей

А 1 А 2 + B 1 B 2 + C 1 C 2 = 2 3 + 5 (- 4) + 7 2 = 0,

т. е. выполняется условие перпендикулярности. Плоскости перпендикулярны.

Для второй пары плоскостей

\(\frac{B_1}{B_2}=\frac{C_1}{C_2}\), так как \(\frac{1}{2}=\frac{-3}{-6} \)

а коэффициенты А 1 и А 2 равны нулю. Следовательно, плоскости второй пары параллельны. Для третьей пары

\(\frac{B_1}{B_2}\neq\frac{C_1}{C_2}\), так как \(\frac{2}{1}\neq\frac{-4}{2} \)

и А 1 А 2 + B 1 B 2 + C 1 C 2 = 4 2 + 2 1 - 4 2 =/= 0, т. е. плоскости третьей пары не параллельны и не перпендикулярны.

При решении геометрических задач в пространстве часто встречаются такие, где необходимо рассчитать углы между разными пространственными объектами. В данной статье рассмотрим вопрос нахождения углов между плоскостями и между ними и прямой.

Прямая в пространстве

Известно, что совершенно любая прямая на плоскости может быть определена следующим равенством:

Здесь a и b - некоторые числа. Если представить тем же самым выражением прямую в пространстве, то получится уже плоскость, параллельная оси z. Для математического определения пространственной прямой применяют иной способ решения, чем в двумерном случае. Он заключается в использовании понятия "направляющий вектор".

Примеры решения задач на определение угла пересечения плоскостей

Зная, как найти между плоскостями угол, решим следующую задачу. Даны две плоскости, уравнения которых имеют вид:

3 * x + 4 * y - z + 3 = 0;

X - 2 * y + 5 * z +1 = 0

Чему между плоскостями равен угол?

Чтобы ответить на вопрос задачи, вспомним, что коэффициенты, стоящие при переменных в уравнении плоскости общем, являются координатами вектора направляющего. Для указанных плоскостей имеем следующие координаты их нормалей:

n 1 ¯(3; 4; -1);

n 2 ¯(-1; -2; 5)

Теперь найдем произведение скалярное этих векторов и их модули, имеем:

(n 1 ¯ * n 2 ¯) = -3 -8 -5 = -16;

|n 1 ¯| = √(9 + 16 + 1) = √26;

|n 2 ¯| = √(1 + 4 + 25) = √30

Теперь можно подставить найденные числа в приведенную в предыдущем пункте формулу. Получаем:

α = arccos(|-16 | / (√26 * √30) ≈ 55,05 o

Полученное значение соответствует острому углу пересечения плоскостей, указанных в условии задачи.

Теперь рассмотрим другой пример. Даны две плоскости:

Пересекаются ли они? Выпишем значения координат их направляющих векторов, посчитаем скалярное произведение их и модули:

n 1 ¯(1; 1; 0);

n 2 ¯(3; 3; 0);

(n 1 ¯ * n 2 ¯) = 3 + 3 + 0 = 6;

|n 1 ¯| = √2;

|n 2 ¯| = √18

Тогда угол пересечения равен:

α = arccos(|6| / (√2 * √18) =0 o .

Этот угол говорит о том, что плоскости не пересекаются, а являются параллельными. Тот факт, что они не совпадают друг с другом проверить просто. Возьмем для этого произвольную точку, принадлежащую первой из них, например, P(0; 3; 2). Подставим ее координаты во второе уравнение, получим:

3 * 0 +3 * 3 + 8 = 17 ≠ 0

То есть точка P принадлежит только первой плоскости.

Таким образом, две плоскости параллельными являются, когда таковыми будут их нормали.

Плоскость и прямая

В случае рассмотрения взаимного расположения между плоскостью и прямой существует несколько больше вариантов, чем с двумя плоскостями. Связан этот факт с тем, что прямая является одномерным объектом. Прямая и плоскость могут быть:

  • взаимно параллельными, в этом случае плоскость не пересекает прямую;
  • последняя может принадлежать плоскости, при этом она также будет параллельна ей;
  • оба объекта могут пересекаться под некоторым углом.

Рассмотрим сначала последний случай, поскольку он требует введения понятия об угле пересечения.

Прямая и плоскость, значение угла между ними

Если плоскость прямая пересекает, то она называется наклонной по отношению к ней. Точку пересечения принято называть основанием наклонной. Чтобы определить между этими геометрическими объектами угол, необходимо опустить из любой точки прямой перпендикуляр на плоскость. Тогда точка пересечения перпендикуляра с плоскостью и место пересечения с ней наклонной образуют прямую. Последняя называется проекцией исходной прямой на рассматриваемую плоскость. Острый и проекцией ее является искомым.

Несколько запутанное определение угла между плоскостью и наклонной прояснит рисунок ниже.

Здесь угол ABO - это угол между AB прямой и a плоскостью.

Чтобы записать формулу для него, рассмотрим пример. Пусть имеется прямая и плоскость, которые описываются уравнениями:

(x ; y ; z) = (x 0 ; y 0 ; z 0) + λ * (a; b; c);

A * x + B * x + C * x + D = 0

Рассчитать искомый угол для этих объектов можно легко, если найти скалярное произведение между направляющими векторами прямой и плоскости. Полученный острый угол следует вычесть из 90 o , тогда он получается между прямой и плоскостью.

Рисунок выше демонстрирует описанный алгоритм нахождения рассматриваемого угла. Здесь β - это угол между нормалью и прямой, а α - между прямой и ее проекцией на плоскость. Видно, что их сумма равна 90 o .

Выше была представлена формула, дающая ответ на вопрос, как между плоскостями найти угол. Теперь приведем соответствующее выражение для случая прямой и плоскости:

α = arcsin(|a * A + b * B + c * C| / (√(a 2 + b 2 + c 2) * √(A 2 + B 2 + C 2)))

Модуль в формуле позволяет вычислять только острые углы. Функция арксинуса появилась вместо арккосинуса благодаря использованию соответствующей формулы приведения между тригонометрическими функциями (cos(β) = sin(90 o-β) = sin(α)).

Задача: плоскость пересекает прямую

Теперь покажем, как работать с приведенной формулой. Решим задачу: необходимо вычислить угол между осью y и плоскостью, заданной уравнением:

Эта плоскость показана на рисунке.

Видно, что она пересекает оси y и z в точках (0; -12; 0) и (0; 0; 12) соответственно и параллельна оси x.

Направляющий вектор прямой y имеет координаты (0; 1; 0). Вектор, перпендикулярный заданной плоскости, характеризуется координатами (0; 1; -1). Применяем формулу для угла пересечения прямой и плоскости, получаем:

α = arcsin(|1| / (√1 * √2)) = arcsin(1 / √2) = 45 o

Задача: параллельная плоскости прямая

Теперь решим аналогичную предыдущей задачу, вопрос которой поставлен иначе. Известны уравнения плоскости и прямой:

x + y - z - 3 = 0;

(x; y; z) = (1; 0; 0) + λ * (0; 2; 2)

Необходимо выяснить, являются ли эти геометрические объекты параллельными друг другу.

Имеем два вектора: направляющий прямой равен (0; 2; 2) и направляющий плоскости равен (1; 1; -1). Находим их скалярное произведение:

0 * 1 + 1 * 2 - 1 * 2 = 0

Полученный ноль говорит о том, что угол между этими векторами равен 90 o , что доказывает прямой и плоскости параллельность.

Теперь проверим, является эта прямая только параллельной или же еще и лежит в плоскости. Для этого следует выбрать произвольную точку на прямой и проверить, принадлежит ли она плоскости. Например, примем λ = 0, тогда точка P(1; 0; 0) прямой принадлежит. Подставляем в уравнение плоскости P:

Точка P плоскости не принадлежит, а значит, и вся прямая в ней не лежит.

Где важно знать углы между рассмотренными геометрическими объектами?

Приведенные выше формулы и примеры решения задач представляют собой не только теоретический интерес. Они часто применяются для определения важных физических величин реальных объемных фигур, например призмы или пирамиды. Важно уметь определить между плоскостями угол при расчете объемов фигур и площадей их поверхностей. При этом, если в случае прямой призмы можно не использовать эти формулы для определения указанных величин, то для любого вида пирамиды их применение оказывается неизбежным.

Ниже рассмотрим пример использования изложенной теории для определения углов пирамиды с квадратным основанием.

Пирамида и ее углы

Ниже рисунок демонстрирует пирамиду, в основании которой лежит квадрат со стороной а. Высота фигуры составляет h. Нужно найти два угла:

  • между боковой поверхностью и основанием;
  • между боковым ребром и основанием.

Чтобы решить поставленную задачу, сначала следует ввести систему координат и определить параметры соответствующих вершин. На рисунке показано, что начало координат совпадает с точкой в центре квадратного основания. В этом случае плоскость основания описывается уравнением:

То есть для любых x и y значение третьей координаты всегда равно нулю. Боковая плоскость ABC пересекает ось z в точке B(0; 0; h), а ось y в точке с координатами (0; a/2; 0). Ось x она не пересекает. Это означает, что уравнение плоскости ABC можно записать в виде:

y / (a / 2) + z / h = 1 или

2 * h * y + a * z - a * h = 0

Вектор AB¯ является боковым ребром. Координаты его начала и конца равны: A(a/2; a/2; 0) и B(0; 0; h). Тогда координаты самого вектора:

Мы нашли все необходимые уравнения и вектора. Теперь остается воспользоваться рассмотренными формулами.

Рассчитаем сначала в пирамиде угол между плоскостями основания и боковой стороны. Соответствующие нормальные вектора равны: n 1 ¯(0; 0; 1) и n 2 ¯(0; 2*h; a). Тогда угол составит:

α = arccos(a / √(4 * h 2 + a 2))

Угол между плоскостью и ребром AB будет равен:

β = arcsin(h / √(a 2 / 2 + h 2))

Остается подставить конкретные значения стороны основания a и высоты h, чтобы получить необходимые углы.

\(\blacktriangleright\) Двугранный угол – угол, образованный двумя полуплоскостями и прямой \(a\) , которая является их общей границей.

\(\blacktriangleright\) Чтобы найти угол между плоскостями \(\xi\) и \(\pi\) , нужно найти линейный угол (причем острый или прямой ) двугранного угла, образованного плоскостями \(\xi\) и \(\pi\) :

Шаг 1: пусть \(\xi\cap\pi=a\) (линия пересечения плоскостей). В плоскости \(\xi\) отметим произвольную точку \(F\) и проведем \(FA\perp a\) ;

Шаг 2: проведем \(FG\perp \pi\) ;

Шаг 3: по ТТП (\(FG\) – перпендикуляр, \(FA\) –наклонная, \(AG\) – проекция) имеем: \(AG\perp a\) ;

Шаг 4: угол \(\angle FAG\) называется линейным углом двугранного угла, образованного плоскостями \(\xi\) и \(\pi\) .

Заметим, что треугольник \(AG\) – прямоугольный.
Заметим также, что плоскость \(AFG\) , построенная таким образом, перпендикулярна обеим плоскостям \(\xi\) и \(\pi\) . Следовательно, можно сказать по-другому: угол между плоскостями \(\xi\) и \(\pi\) - это угол между двумя пересекающимися прямыми \(c\in \xi\) и \(b\in\pi\) , образующими плоскость, перпендикулярную и \(\xi\) , и \(\pi\) .

Задание 1 #2875

Уровень задания: Сложнее ЕГЭ

Дана четырехугольная пирамида, все ребра которой равны, причем основание является квадратом. Найдите \(6\cos \alpha\) , где \(\alpha\) – угол между ее смежными боковыми гранями.

Пусть \(SABCD\) – данная пирамида (\(S\) – вершина), ребра которой равны \(a\) . Следовательно, все боковые грани представляют собой равные равносторонние треугольники. Найдем угол между гранями \(SAD\) и \(SCD\) .

Проведем \(CH\perp SD\) . Так как \(\triangle SAD=\triangle SCD\) , то \(AH\) также будет высотой в \(\triangle SAD\) . Следовательно, по определению \(\angle AHC=\alpha\) – линейный угол двугранного угла между гранями \(SAD\) и \(SCD\) .
Так как в основании лежит квадрат, то \(AC=a\sqrt2\) . Заметим также, что \(CH=AH\) – высота равностороннего треугольника со стороной \(a\) , следовательно, \(CH=AH=\frac{\sqrt3}2a\) .
Тогда по теореме косинусов из \(\triangle AHC\) : \[\cos \alpha=\dfrac{CH^2+AH^2-AC^2}{2CH\cdot AH}=-\dfrac13 \quad\Rightarrow\quad 6\cos\alpha=-2.\]

Ответ: -2

Задание 2 #2876

Уровень задания: Сложнее ЕГЭ

Плоскости \(\pi_1\) и \(\pi_2\) пересекаются под углом, косинус которого равен \(0,2\) . Плоскости \(\pi_2\) и \(\pi_3\) пересекаются под прямым углом, причем линия пересечения плоскостей \(\pi_1\) и \(\pi_2\) параллельна линии пересечения плоскостей \(\pi_2\) и \(\pi_3\) . Найдите синус угла между плоскостями \(\pi_1\) и \(\pi_3\) .

Пусть линия пересечения \(\pi_1\) и \(\pi_2\) – прямая \(a\) , линия пересечения \(\pi_2\) и \(\pi_3\) – прямая \(b\) , а линия пересечения \(\pi_3\) и \(\pi_1\) – прямая \(c\) . Так как \(a\parallel b\) , то \(c\parallel a\parallel b\) (по теореме из раздела теоретической справки “Геометрия в пространстве” \(\rightarrow\) “Введение в стереометрию, параллельность”).

Отметим точки \(A\in a, B\in b\) так, чтобы \(AB\perp a, AB\perp b\) (это возможно, так как \(a\parallel b\) ). Отметим \(C\in c\) так, чтобы \(BC\perp c\) , следовательно, \(BC\perp b\) . Тогда \(AC\perp c\) и \(AC\perp a\) .
Действительно, так как \(AB\perp b, BC\perp b\) , то \(b\) перпендикулярна плоскости \(ABC\) . Так как \(c\parallel a\parallel b\) , то прямые \(a\) и \(c\) тоже перпендикулярны плоскости \(ABC\) , а значит и любой прямой из этой плоскости, в частности, прямой \(AC\) .

Отсюда следует, что \(\angle BAC=\angle (\pi_1, \pi_2)\) , \(\angle ABC=\angle (\pi_2, \pi_3)=90^\circ\) , \(\angle BCA=\angle (\pi_3, \pi_1)\) . Получается, что \(\triangle ABC\) прямоугольный, а значит \[\sin \angle BCA=\cos \angle BAC=0,2.\]

Ответ: 0,2

Задание 3 #2877

Уровень задания: Сложнее ЕГЭ

Даны прямые \(a, b, c\) , пересекающиеся в одной точке, причем угол между любыми двумя из них равен \(60^\circ\) . Найдите \(\cos^{-1}\alpha\) , где \(\alpha\) – угол между плоскостью, образованной прямыми \(a\) и \(c\) , и плоскостью, образованной прямыми \(b\) и \(c\) . Ответ дайте в градусах.

Пусть прямые пересекаются в точке \(O\) . Так как угол между любыми двумя их них равен \(60^\circ\) , то все три прямые не могут лежать в одной плоскости. Отметим на прямой \(a\) точку \(A\) и проведем \(AB\perp b\) и \(AC\perp c\) . Тогда \(\triangle AOB=\triangle AOC\) как прямоугольные по гипотенузе и острому углу. Следовательно, \(OB=OC\) и \(AB=AC\) .
Проведем \(AH\perp (BOC)\) . Тогда по теореме о трех перпендикулярах \(HC\perp c\) , \(HB\perp b\) . Так как \(AB=AC\) , то \(\triangle AHB=\triangle AHC\) как прямоугольные по гипотенузе и катету. Следовательно, \(HB=HC\) . Значит, \(OH\) – биссектриса угла \(BOC\) (так как точка \(H\) равноудалена от сторон угла).

Заметим, что таким образом мы к тому же построили линейный угол двугранного угла, образованного плоскостью, образованной прямыми \(a\) и \(c\) , и плоскостью, образованной прямыми \(b\) и \(c\) . Это угол \(ACH\) .

Найдем этот угол. Так как точку \(A\) мы выбирали произвольно, то пусть мы выбрали ее так, что \(OA=2\) . Тогда в прямоугольном \(\triangle AOC\) : \[\sin 60^\circ=\dfrac{AC}{OA} \quad\Rightarrow\quad AC=\sqrt3 \quad\Rightarrow\quad OC=\sqrt{OA^2-AC^2}=1.\] Так как \(OH\) – биссектриса, то \(\angle HOC=30^\circ\) , следовательно, в прямоугольном \(\triangle HOC\) : \[\mathrm{tg}\,30^\circ=\dfrac{HC}{OC}\quad\Rightarrow\quad HC=\dfrac1{\sqrt3}.\] Тогда из прямоугольного \(\triangle ACH\) : \[\cos\angle \alpha=\cos\angle ACH=\dfrac{HC}{AC}=\dfrac13 \quad\Rightarrow\quad \cos^{-1}\alpha=3.\]

Ответ: 3

Задание 4 #2910

Уровень задания: Сложнее ЕГЭ

Плоскости \(\pi_1\) и \(\pi_2\) пересекаются по прямой \(l\) , на которой лежат точки \(M\) и \(N\) . Отрезки \(MA\) и \(MB\) перпендикулярны прямой \(l\) и лежат в плоскостях \(\pi_1\) и \(\pi_2\) соответственно, причем \(MN = 15\) , \(AN = 39\) , \(BN = 17\) , \(AB = 40\) . Найдите \(3\cos\alpha\) , где \(\alpha\) – угол между плоскостями \(\pi_1\) и \(\pi_2\) .

Треугольник \(AMN\) прямоугольный, \(AN^2 = AM^2 + MN^2\) , откуда \ Треугольник \(BMN\) прямоугольный, \(BN^2 = BM^2 + MN^2\) , откуда \ Запишем для треугольника \(AMB\) теорему косинусов: \ Тогда \ Так как угол \(\alpha\) между плоскостями – это острый угол, а \(\angle AMB\) получился тупым, то \(\cos\alpha=\dfrac5{12}\) . Тогда \

Ответ: 1,25

Задание 5 #2911

Уровень задания: Сложнее ЕГЭ

\(ABCDA_1B_1C_1D_1\) – параллелепипед, \(ABCD\) – квадрат со стороной \(a\) , точка \(M\) – основание перпендикуляра, опущенного из точки \(A_1\) на плоскость \((ABCD)\) , кроме того \(M\) – точка пересечения диагоналей квадрата \(ABCD\) . Известно, что \(A_1M = \dfrac{\sqrt{3}}{2}a\) . Найдите угол между плоскостями \((ABCD)\) и \((AA_1B_1B)\) . Ответ дайте в градусах.

Построим \(MN\) перпендикулярно \(AB\) как показано на рисунке.


Так как \(ABCD\) – квадрат со стороной \(a\) и \(MN\perp AB\) и \(BC\perp AB\) , то \(MN\parallel BC\) . Так как \(M\) – точка пересечения диагоналей квадрата, то \(M\) – середина \(AC\) , следовательно, \(MN\) – средняя линия и \(MN =\frac12BC= \frac{1}{2}a\) .
\(MN\) – проекция \(A_1N\) на плоскость \((ABCD)\) , причем \(MN\) перпендикулярен \(AB\) , тогда по теореме о трех перпендикулярах \(A_1N\) перпендикулярен \(AB\) и угол между плоскостями \((ABCD)\) и \((AA_1B_1B)\) есть \(\angle A_1NM\) .
\[\mathrm{tg}\, \angle A_1NM = \dfrac{A_1M}{NM} = \dfrac{\frac{\sqrt{3}}{2}a}{\frac{1}{2}a} = \sqrt{3}\qquad\Rightarrow\qquad\angle A_1NM = 60^{\circ}\]

Ответ: 60

Задание 6 #1854

Уровень задания: Сложнее ЕГЭ

В квадрате \(ABCD\) : \(O\) – точка пересечения диагоналей; \(S\) – не лежит в плоскости квадрата, \(SO \perp ABC\) . Найдите угол между плоскостями \(ASD\) и \(ABC\) , если \(SO = 5\) , а \(AB = 10\) .

Прямоугольные треугольники \(\triangle SAO\) и \(\triangle SDO\) равны по двум сторонам и углу между ними (\(SO \perp ABC\) \(\Rightarrow\) \(\angle SOA = \angle SOD = 90^\circ\) ; \(AO = DO\) , т.к. \(O\) – точка пересечения диагоналей квадрата, \(SO\) – общая сторона) \(\Rightarrow\) \(AS = SD\) \(\Rightarrow\) \(\triangle ASD\) – равнобедренный. Точка \(K\) – середина \(AD\) , тогда \(SK\) – высота в треугольнике \(\triangle ASD\) , а \(OK\) – высота в треугольнике \(AOD\) \(\Rightarrow\) плоскость \(SOK\) перпендикулярна плоскостям \(ASD\) и \(ABC\) \(\Rightarrow\) \(\angle SKO\) – линейный угол, равный искомому двугранному углу.


В \(\triangle SKO\) : \(OK = \frac{1}{2}\cdot AB = \frac{1}{2}\cdot 10 = 5 = SO\) \(\Rightarrow\) \(\triangle SOK\) – равнобедренный прямоугольный треугольник \(\Rightarrow\) \(\angle SKO = 45^\circ\) .

Ответ: 45

Задание 7 #1855

Уровень задания: Сложнее ЕГЭ

В квадрате \(ABCD\) : \(O\) – точка пересечения диагоналей; \(S\) – не лежит в плоскости квадрата, \(SO \perp ABC\) . Найдите угол между плоскостями \(ASD\) и \(BSC\) , если \(SO = 5\) , а \(AB = 10\) .

Прямоугольные треугольники \(\triangle SAO\) , \(\triangle SDO\) , \(\triangle SOB\) и \(\triangle SOC\) равны по двум сторонам и углу между ними (\(SO \perp ABC\) \(\Rightarrow\) \(\angle SOA = \angle SOD = \angle SOB = \angle SOC = 90^\circ\) ; \(AO = OD = OB = OC\) , т.к. \(O\) – точка пересечения диагоналей квадрата, \(SO\) – общая сторона) \(\Rightarrow\) \(AS = DS = BS = CS\) \(\Rightarrow\) \(\triangle ASD\) и \(\triangle BSC\) – равнобедренные. Точка \(K\) – середина \(AD\) , тогда \(SK\) – высота в треугольнике \(\triangle ASD\) , а \(OK\) – высота в треугольнике \(AOD\) \(\Rightarrow\) плоскость \(SOK\) перпендикулярна плоскости \(ASD\) . Точка \(L\) – середина \(BC\) , тогда \(SL\) – высота в треугольнике \(\triangle BSC\) , а \(OL\) – высота в треугольнике \(BOC\) \(\Rightarrow\) плоскость \(SOL\) (она же плоскость \(SOK\) ) перпендикулярна плоскости \(BSC\) . Таким образом получаем, что \(\angle KSL\) – линейный угол, равный искомому двугранному углу.


\(KL = KO + OL = 2\cdot OL = AB = 10\) \(\Rightarrow\) \(OL = 5\) ; \(SK = SL\) – высоты в равных равнобедренных треугольниках, которые можно найти по теореме Пифагора: \(SL^2 = SO^2 + OL^2 = 5^2 + 5^2 = 50\) . Можно заметить, что \(SK^2 + SL^2 = 50 + 50 = 100 = KL^2\) \(\Rightarrow\) для треугольника \(\triangle KSL\) выполняется обратная теорема Пифагора \(\Rightarrow\) \(\triangle KSL\) – прямоугольный треугольник \(\Rightarrow\) \(\angle KSL = 90^\circ\) .

Ответ: 90

Подготовка учащихся к сдаче ЕГЭ по математике, как правило, начинается с повторения основных формул, в том числе и тех, которые позволяют определить угол между плоскостями. Несмотря на то, что этот раздел геометрии достаточно подробно освещается в рамках школьной программы, многие выпускники нуждаются в повторении базового материала. Понимая, как найти угол между плоскостями, старшеклассники смогут оперативно вычислить правильный ответ в ходе решения задачи и рассчитывать на получение достойных баллов по итогам сдачи единого государственного экзамена.

Основные нюансы

    Чтобы вопрос, как найти двугранный угол, не вызывал затруднений, рекомендуем следовать алгоритму решения, который поможет справиться с заданиями ЕГЭ.

    Вначале необходимо определить прямую, по которой пересекаются плоскости.

    Затем на этой прямой нужно выбрать точку и провести к ней два перпендикуляра.

    Следующий шаг - нахождение тригонометрической функции двугранного угла, который образован перпендикулярами. Делать это удобнее всего при помощи получившегося треугольника, частью которого является угол.

    Ответом будет значение угла или его тригонометрической функции.

Подготовка к экзаменационному испытанию вместе со «Школково» - залог вашего успеха

В процессе занятий накануне сдачи ЕГЭ многие школьники сталкиваются с проблемой поиска определений и формул, которые позволяют вычислить угол между 2 плоскостями. Школьный учебник не всегда есть под рукой именно тогда, когда это необходимо. А чтобы найти нужные формулы и примеры их правильного применения, в том числе и для нахождения угла между плоскостями в Интернете в режиме онлайн, порой требуется потратить немало времени.

Математический портал «Школково» предлагает новый подход к подготовке к госэкзамену. Занятия на нашем сайте помогут ученикам определить наиболее сложные для себя разделы и восполнить пробелы в знаниях.

Мы подготовили и понятно изложили весь необходимый материал. Базовые определения и формулы представлены в разделе «Теоретическая справка».

Для того чтобы лучше усвоить материал, предлагаем также попрактиковаться в выполнении соответствующих упражнений. Большая подборка задач различной степени сложности, например, на , представлена в разделе «Каталог». Все задания содержат подробный алгоритм нахождения правильного ответа. Перечень упражнений на сайте постоянно дополняется и обновляется.

Практикуясь в решении задач, в которых требуется найти угол между двумя плоскостями, учащиеся имеют возможность в онлайн-режиме сохранить любое задание в «Избранное». Благодаря этому они смогут вернуться к нему необходимое количество раз и обсудить ход его решения со школьным учителем или репетитором.



Понравилась статья? Поделитесь ей