Контакты

Выбор трассы тепловых сетей и способы прокладки. Способы прокладки трубопроводов тепловых сетей

ПОДЗЕМНАЯ ПРОКЛАДКА

Канальные прокладки предназначены для защиты трубопроводов от механического воздействия грунтов и коррозионного влияния почвы.

4.904-66 Прокладка трубопроводов водяных тепловых сетей в непроходных каналах

Стены каналов облегчают работу трубопроводов.

В бесканальных прокладках трубопроводы работают в более тяжелых условиях, так как они воспринимают дополнительную нагрузку грунта и при неудовлетворительной защите от влаги подвержены наружной коррозии.

Проходные каналы применяются при прокладке в одном направлении не менее пяти труб большого диаметра. Проходные каналы используют часто для прокладки теплопроводов под многоколейными железными дорогами и автострадами с интенсивным движением транспорта, не допускающим вскрытия каналов и нарушения работы узлов на период ремонта сетей.

Полупроходные каналы применяют в стесненных условиях местности, когда невозможно возведение проходных каналов Их используют в основном для прокладки сетей на коротких участках под крупными инженерными узлами, не допускающими вскрытия каналов для ремонта трубопроводов. Высота полупроходных каналов принимается не менее 1,4 м, свободный проход - не менее 0,6 м; при этих габаритах возможно проведение мелкого ремонта труб.

Непроходные каналы имеют наибольшее распространение среди других видов каналов Каждый вид кана-

канала применяется в зависимости от местных условий изготовления, свойств грунта, места прокладки. В непроходные каналы укладывают трубопроводы тепловых сетей, не требующие постоянного надзора.

Глубина заложения каналов принимается исходя из минимального объема земляных работ и надежного укрытия от раздавливания транспортом. Наименьшее заглубление от поверхности земли до верха перекрытия каналов в любом случае принимается не менее 0,5 м.

Бесканальная прокладка - перспективный и экономичный способ строительства тепловых сетей. Перечень строительно-монтажных операций, а следовательно, и объем работ при бесканальной

прокладке значительно уменьшается, благодаря чему стоимость сетей по сравнению с канальной прокладкой снижается на 20- 25%. По этим соображениям тепловые сети с диаметрами трубо-

Камеры устанавливают по трассе подземных теплопроводов для размещения в них задвижек, сальниковых компенсаторов, неподвижных опор, ответвлений, дренажных и воздушных устройств, измерительных приборов.

НАДЗЕМНАЯ ПРОКЛАДКА

Воздушная прокладка имеет ряд положительных эксплуатационных преимуществ:

а) лучшая доступность и обозреваемость сетей, способствующие своевременному устранению неисправностей; б) отсутствие разрушающего влияния грунтовых вод; в) использование более надежных в работе П-образных компенсаторов; г) широкая возможность устройства прямолинейного продольного профиля теплопроводов, при котором уменьшается количество воздушных и спускных вентилей.

Вместе взятые факторы способствуют повышению долговечности и снижению стоимости сетей по сравнению с канальной прокладкой на 30-60%· Использование надземной прокладки снять ограничения параметров теплоносителей, установленных для подземных сетей. Надземная прокладка осуществляется на отдельно стоящих стойках и эстакадах.

Эстакады сооружают для совместной прокладки большого числа трубопроводов различного назначения и диаметров.

31. Тепловая изоляция

Экономическая эффективность систем теплоснабжения при современных масштабах в значительной мере зависит от тепловой изоляции оборудования и трубопроводов. Тепловая изоляция служит для уменьшения тепловых потерь и обеспечения допустимой температуры изолируемой поверхности.

Материалы используемые в качестве теплоизолятора должны обладать высокими теплозащитными свойствами и низким водопоглащением в течение длительного срока эксплуатации.

Высокие требования предъявляются к химической чистоте изоляторов. Изоляционные материалы, содержащие химические соединения агрессивные по отношению к металлу, не допускаются к применению, т.к. при увлажнении эти соединения вымываются, поадая на металлические поверхности, вызывают их коррозию. Например, шлаки и ваты относятся к числу качественных изоляторов, но содержание окислов серы более 3% делает их непригодными во влажных условиях.

Коэффициент теплопроводности большинства сухих изоляционных материалов изменяется в пределах 0,05 – 0,25 Вт/м °C.

Операции по нанесению тепловой изоляции выполняются в определенной технологической последовательности, разделяющейся на этапы: 1) подготовка труб или оборудования; 2) антикоррозийная защита; 3) нанесение основного слоя теплоизоляции; 4) наружная отделка конструкции.

При подготовке наружная поверхность очищается от ржавчины и грязи до металлического блеска. Трубы очищаются электрическими и пневматическими щетками, пескоструйными аппаратами. Затем обезжириваются уайт-спиритом, бензином или другими растворителями.

Для защиты металла от коррозии применяют битумные мастики и пасты.

Основной изоляционный слой выполняют из материалов, отвечающих требованиям изолятора. Толщина слоя принимается в зависимости о теплофизических свойств материала и норм, предъявляемых к поверхности.

Наружная отделка состоит из покровного слоя и защитного покрытия. Покровный слой, толщиной 10-20 мм, служит для предохранения основного слоя от атмосферных осадков, грунтовой влаги и механического повреждения. Защитное покрытие наносят на покровный слой наклеиванием водоотталкивающих рулонов с последующей окраской. Такая защита повышает надежность покровного слоя, улучшает оформление внешнего вида, повышает механическую прочность всей изоляционной конструкции и увеличивает срок ее службы.

32. Пуск тепловых сетей

Пуск систем теплоснабжения в промышленную эксплуатацию производит пусковая бригада по программе, составленной руководителем приемочной комиссии.

За основу пусковой схемы принимается исполнительная схема вновь сооруженной или действующей тепловой сети. Для организованного проведения пусковых операций тепловая сеть разделяется на секционные участки. Для каждого секционного участка на пусковой схеме сетей, указывается емкость, необходимая для расчета времени заполнения участка, отмечается расположение грязевиков, задвижек, П-образных и сальниковых компенсаторов, камер с размещенными в них приборами и дренажной арматурой, неподвижных опор. В плане пуска сетей указывается очередность и правила заполнения секционных участков, а так же продолжительность выдержки давления в различные периоды.

Пуск водяных тепловых сетей начинается с наполнения секционного участка водопроводной водой, нагнетаемой в обратную магистраль под напором подпиточного насоса. В теплое время года сети наполняются холодной водой. При температуре воздуха ниже +1, рекомендуется прогревать воду до +50.

В период заполнения на обратном трубопроводе перекрываются все спускные краны и задвижки на ответвлениях, открытыми остаются лишь воздушники.

После заполнения всей секции производится двух-трехчасовая выдержка для окончательного удаления воздушных скоплений.

Сначала заполняются магистральные трубопроводы, затем распределительные и квартальные сети, и в конце ответвления к зданиям.

Следующий шаг пусковой операции является опрессовка на плотность и прочность, которая производится последовательно на всех секциях. После испытания прочность системы приступают к промывке трубопроводов от грязи, окалины и шлама, занесенных во время монтажных работ. Промывка ведется до полного осветления воды, в конце промывки сети заполняют химически очищенной водой.

Общий расход воды на гидравлические испытания и промывку составляет два-три объема всей теплосети.

После некоторого периода циркуляции воды, необходимого для проверки состояния компенсаторов, опор, арматуры, производится подключение станционных подогревателей для подогрева сетей. Операция подогрева производится медленно, скорость прогрева не больше 30 градус цельсия в час.

Мелкие дефекты (утечки через дренажи, воздушные скопления) устраняются в процессе прогрева. Для исправления крупных неисправностей необходима остановка сети.

После устранения всех неисправностей теплопровод пускается в 72-часовую контрольную эксплуатацию.

Пуск тепловых вводов, пунктов и подстанций сводится к гидравлической опрессовке, выполняемой в теплое время года.

  • БУХТА - часть водоёма, обособленная от открытых вод отрезками берега или островами…
  • Естествознание. Энциклопедический словарь

  • БУХТА - более или менее глубоко вдающийся в сушу участок моря. Б. бывают: абразионные - возникшие вследствие неравномерной абразии берега…

    Геологическая энциклопедия

  • БУХТА - полузамкнутая прибрежная часть водоема, отделенная от открытых вод отрезками берега или островами, с малой циркуляцией водных масс и поэтому особенно подверженная разрушительному действию…

    Способы прокладки трубопроводов тепловых сетей

    Экологический словарь

  • БУХТА - 1) небольшой залив, защищённый от ветра и волнения выступающими в море частями берега или близлежащими островами. Б. используются часто для стоянок лодок, судов…

    Большой энциклопедический политехнический словарь

  • Бухта - длинная труба, смотанная на барабане или бухтосверточной машине…

    Энциклопедический словарь по металлургии

  • БУХТА - небольшой залив, защищенный от ветра, открытый к морю с одной какой-либо стороны и удобный для стоянки судов…

    Морской словарь

  • Бухта - небольшая часть моря, залива, озера, водохранилища, обособленная от открытых вод частями суши. Местные условия определяют гидрологический режим Б., несколько отличающийся от режима прилегающих к ней…
  • Находка бухта (бухта у берега Обской губы) - Находка бухта, бухта у западного берега Обской губы в Ямало-Ненецком национальном округе. Вдаётся в сушу на 9 км, мелководна, при отливе обнажается песчано-илистая полоса дна шириной до 2‒3 км. Вода пресная…

    Большая Советская энциклопедия

  • Находка бухта (бухта у берега Японского моря) - Находка бухта, бухта залива Америка, у северно-западного берега Японского моря, в Приморском крае РСФСР. Длина 4,6 км, ширина 1,8 км. Зимой большая часть бухты замерзает…

    Большая Советская энциклопедия

  • БУХТА - часть водоема, обособленная от открытых вод отрезками берега или островами…

    Большой энциклопедический словарь

  • бухта - I бу́хта I. "залив", из нем. Bucht – то же, связано с biegen "гнуть"; см. Клюге-Гётце. II бу́хта II. "вода, насыщенная снегом на льду", арханг. , также у́хта, у́хка. Согласно Калиме, заимств…

    Этимологический словарь Фасмера

  • бухта - ; мн. бу/хты, Р….

    Орфографический словарь русского языка

  • БУХТА - жен., нем. морской залив, заводь. | Круг укладки якорного каната, на палубе. Команда: Из бухты вон, перед отдачей якоря, остерегает людей, отскочить от разведенного каната…

    Толковый словарь Даля

  • БУХТА - БУ́ХТА, -ы, жен. Небольшой глубокий залив…

    Толковый словарь Ожегова

  • Толковый словарь Ушакова

  • БУХТА - БУ́ХТА, бухты, жен. …

    Толковый словарь Ушакова

  • Теплотехника СВИТ СПБ » Полезные материалы » Канальная и бесканальная прокладка теплотрасс

    Подземная прокладка — это оптимальный способ организации тепловых сетей в условиях населенных пунктов. Используется несколько технологий:

    • канальная (непроходные, полупроходные каналы);
    • туннельная (проходные каналы);
    • с использованием общих подземных инженерных коллекторов;
    • бесканальный способ.

    Выбор варианта определяется конкретными условиями территории, по которой будет проходить тепломагистраль, требованиями к надежности трубопровода, диаметром его труб, соответствием экономических затрат бюджету строительства, используемыми технологиями строительства.

    Канальная прокладка

    Технология прокладки тепломагистралей в специально подготовленных каналах считается наиболее надежной и проверенной. Это универсальный способ обустройства тепловых трасс в грунте любого типа. Такой способ позволяет:

    • использовать железобетонные лотковые конструкционные элементы и плиты перекрытия в качестве каналообразующих конструкций трубопровода;
    • использовать теплоизоляцию (минеральная вата, стекловолокно и пр.) навесного типа;
    • исключить контакт трубопровода с грунтом, который способен оказать на металл разрушительное механическое и электрохимическое воздействие;
    • разгрузить трубопровод от временных транспортных нагрузок;
    • обустраивать камеры на линейных частях трубопроводов для монтажа отводов, запорно-регулирующей и контролирующей аппаратуры;
    • обеспечить свободное деформационное перемещение труб при их нагревании (осевое и поперечное);
    • снизить стоимость прокладки трубопроводов благодаря отсутствию дорогостоящих сальниковых компенсаторов температурного расширения;
    • обеспечить дополнительную защиту граждан от поражения горячей водой в случае повреждения трубопровода.

    Канал может иметь монолитную структуру и заливаться непосредственно на месте монтажа или же собираться из отдельных готовых лотков.

    Способы прокладки тепловых сетей

    Готовые каналы - это общие инженерные тоннели и коллектора.

    Бесканальная прокладка

    При бесканальной прокладке трубы засыпаются в отсыпанной песком траншее грунтом без применения каких-либо ограждающих конструкций. Этот способ при использовании современных теплоизолирующих материалов имеет ряд преимуществ. Также для него характерны и определенные недостатки… Итак, при бесканальной прокладке:

    • используются предизолированные трубопроводы;
    • снижается стоимость монтажных работ;
    • отсутствуют ограждающие конструкции для труб;
    • обеспечивается нормальная эксплуатация трубопроводов при высоком уровне грунтовых вод;
    • отсутствует свободный доступ персонала к трубам для контроля и ремонта.

    Алгоритм обустройства бесканальных теплотрасс таков:

    • копание траншеи;
    • выравнивание ее основания и отсыпка песком;
    • укладка труб;
    • засыпка и трамбовка грунта;
    • засыпка гравийной прослойки и заливка бетонного перекрытия под асфальтирование;
    • асфальтирование или благоустройство территории.

    Отдельным видом бесканального монтажа трубопроводов теплоснабжения является метод горизонтально-направленного бурения или продавливания. Эта технология позволяет обустраивать трубопроводы под различными препятствиями: полотнами автодорог, железнодорожными путями, руслами рек и каналов.

    Выбор способа для монтажа теплотрассы определяется доступными техническими средствами и особенностями территории, на которой планируется прокладка тепломагистралей, их параметрами и эксплуатационными режимами.

    Канальная и бесканальная прокладка теплотрасс

    Тепловая сеть - это система трубопроводов с круговой циркуляцией теплоносителя (источник тепла - потребитель - источник тепла). Теплотрасса - это часть теплоснабжающей системы, соединяющая потребителя с источником тепла.

    Выбор способа прокладки тепловых сетей

    Монтаж теплотрасс традиционными способами

    Прокладка теплосетей может выполняться в почве или над поверхностью земли на специальных опорах. Традиционно монтаж подземных теплотрасс выполняется канальным и бесканальным методом.

    • Канальная прокладка теплосети предполагает укладку труб в канале, обустроенном в заранее вырытой траншее. Каналы могут быть монолитными (с залитым основанием и армированными стенками) и лотковыми, которые представляют собой готовый железобетонный лоток.
    • Бесканальная прокладка теплосети предполагает установку труб прямо в траншее. Чтобы трубопровод не контактировал с грунтом, используется пенополиуретановая (ППУ) изоляция.

    Бестраншейная прокладка теплосетей

    Традиционные траншейные методы прокладки трубопровода теплосети требуют значительных трудовых и финансовых затрат, а в некоторых местах вырыть траншею вообще невозможно.

    В условиях плотной городской застройки, где трубопровод «встречается» с автодорогами, зданиями и сооружениями, оптимальным решением является прокладка теплотрассы в земле с помощью горизонтально направленного бурения (ГНБ). В этом случае в предварительно подготовленную скважину протягивается футляр из стали или ПНД, который исключает соприкосновение трубопровода с грунтом.

    Прокладка теплосети под дорогой или другим препятствием методом ГНБ включает в себя несколько стадий:

    1. Пилотное бурение. Головка бурильной установки пробуривает в почве предварительную скважину и расширяет ее до нужного диаметра за один или несколько проходов.
    2. Расширение канала. Пилотная скважина расширется до нужного диаметра.
    3. Прокладка футляра. Буровая установка протягивает в канал сваренные секции футляра.
    4. Монтаж трубопровода. В стальной или ПНД-футляр затягиваются трубы теплосети, заключенные в ППУ-изоляцию.

    Преимущества прокладки теплосети методом ГНБ

    В сравнении с традиционными способами устройства трубопроводов горизонтально направленное бурение имеет множество достоинств. Это:

    Бестраншейная прокладка теплотрасс особенно востребована в условиях плотной городской застройки. Профессиональное буровое оборудование позволяет менять изношенные коммуникации в местах с развитой инфраструктурой, прокладывать новые трубопроводы под различными препятствиями - дорогами, зданиями и сооружениями.

    Компания «Системы ДИТЧ ВИТЧ» предлагает буровые установки американского производства под маркой Ditch Witch®. Компактные самоходные агрегаты подходят для прокладки трубопроводов в практически любых, на различной глубине под любыми препятствиями.

    Чтобы заказать буровую установку, позвоните по телефону на сайте или заполните форму обратной связи.

    Выбрать буровую установку ГНБ

    все установки гнб

    Если вам необходимо выполнить однократную работу и приобретение бурового оборудования не оправданно, мы поможем найти субподрядную организацию.

    Компания "Системы ДИТЧ ВИТЧ" сотрудничает с организациями, занимающимися прокладкой коммуникаций методом горизонтально направленного бурения, прокладкой коммуникаций открытым способом, рытьем траншей, разрушением труб (санация коммуникаций) и другими работами по всей России.

    Способы прокладки трубопроводов тепловых сетей

    Канальная прокладка удовлетворяет большинству требований, однако стоимость ее в зависимости от диаметра выше на 10-50% бесканальной. Каналы предохраняют трубопроводы от воздействия грунтовых, атмосфер­ных и паводковых вод. Трубопроводы в них укладывают на подвижные и неподвижные опоры, при этом обеспечивается организованное тепловое удлинение.

    Технологические размеры канала принимают исходя из минимального расстояния в свету между трубами и элементами конструкции, которое в зависимости от диаметра труб 25-1400 мм соответственно принимают рав­ным: до стенки 70-120 мм; до перекрытия 50-100 мм; до поверхности изо­ляции соседнего трубопровода 100-250 мм. Глубину заложения канала принимают исходя из минимального объема земляных работ и равномерно­го распределения сосредоточенных нагрузок от автотранспорта на пере­крытие. В большинстве случаев толщина слоя грунта над перекрытием со­ставляет 0,8-1,2 м, но не менее 0,5 м.

    При централизованном теплоснабжении для прокладки тепловых сетей применяют непроходные, полупроходные или проходные каналы. Если глубина заложения превышает 3 м, то для возможности замены труб со­оружают полупроходные или проходные каналы.

    Непроходные каналы применяют для прокладки трубопроводов диа­метром до 700 мм независимо от числа труб. Конструкция канала зависит от влажности грунта. В сухих грунтах чаще устраивают блочные каналы с бетонными или кирпичными стенками либо железобетонные одно- и мно­гоячейковые. В слабых грунтах вначале выполняют бетонное основание, на которое устанавливают железобетонную плиту. При высоком уровне грун­товых вод для их отвода в основании канала прокладывают дренажный трубопровод. Тепловую сеть в непроходных каналах по возможности раз­мещают вдоль газонов.

    В настоящее время устраивают преимущественно каналы из сборных железобетонных лотковых элементов (независимо от диаметра проклады­ваемых трубопроводов) типов КЛ, КЛс, или стеновых панелей типов КС и др. Каналы перекрывают плоскими железобетонными плитами. Основания каналов всех типов выполняют из бетонных плит, тощего бетона или пес­чаной подготовки.

    При необходимости замены труб, вышедших из строя, или при ремонте тепловой сети в непроходных каналах приходится разрывать грунт и разби­рать канал. В некоторых случаях это сопровождается вскрытием мостового или асфальтного покрытия.

    Полупроходные каналы. В сложных условиях пересечения трубопрово­дами тепловой сети существующих подземных коммуникаций, под проез­жей частью, при высоком уровне стояния грунтовых вод вместо непроход­ных устраивают полупроходные каналы. Их применяют также при про­кладке небольшого числа труб в тех местах, где по условиям эксплуатации вскрытие проезжей части исключено, а также при прокладке трубопроводов больших диаметров (800-1400 мм). Высоту полупроходного канала прини­мают не менее 1400 мм. Каналы выполняют из сборных железобетонных элементов - плиты днища, стенового блока и плиты перекрытия.

    Проходные каналы. Иначе их называют коллекторами; они сооружают­ся при наличии большого числа трубопроводов. Их располагают под мосто­выми крупных магистралей, на территории больших промышленных пред­приятий, на участках, прилегающих к зданиям теплоэлектроцентралей. Со­вместно с теплопроводами в этих каналах размещают и другие подземные коммуникации: электро- и телефонные кабели, водопровод, газопровод низкого давления и т. п. Для осмотра и ремонта в коллекторах обеспечива­ется свободный доступ обслуживающего персонала к трубопроводам и оборудованию.

    Коллекторы выполняются из железобетонных ребристых плит, звеньев рамной конструкции, крупных блоков и объемных элементов. Они обору­дуются освещением и естественной приточно-вытяжной вентиляцией с трехкратным воздухообменом, обеспечивающим температуру воздуха не более 30°С, и устройством для удаления воды. Входы в коллекторы преду­сматриваются через каждые 100-300 м. Для установки компенсирующих и запорных устройств на тепловой сети должны быть выполнены специаль­ные ниши и дополнительные лазы.

    Бесканальная прокладка. Для защиты трубопроводов от механических воздействий при этом способе прокладки устраивают усиленную тепловую изоляцию - оболочку. Достоинствами бесканальной прокладки теплопро­водов являются сравнительно небольшая стоимость строительно-монтажных работ, небольшой объем земляных работ и сокращение сроков строительства. К ее недостаткам относится повышенная подверженность стальных труб наружной почвенной, химической и электрохимической коррозии.

    При таком виде прокладки подвижные опоры не используют; трубы с тепловой изоляцией укладывают непосредственно на песчаную подушку, отсыпанную на предварительно выровненное дно траншеи. Неподвижные опоры при бесканальной прокладке труб, так же, как и при канальной, представляют собой железобетонные щитовые стенки, установленные пер­пендикулярно теплопроводам. Эти опоры при небольших диаметрах тепло­проводов, как правило, применяют вне камер или в камерах с большим диаметром при больших осевых усилиях. Для компенсации тепловых удли­нений труб применяют гнутые или сальниковые компенсаторы, располо­женные в специальных нишах или камерах. На поворотах трассы во избе­жание зажатия труб в грунте и для обеспечения возможного их перемеще­ния сооружают непроходные каналы.

    При бесканальной прокладке применяют засыпные, сборные и моно­литные типы изоляции. Широкое распространение получила монолитная оболочка из автоклавного армированного пенобетона.

    Надземная прокладка. Этот тип прокладки является наиболее удобным в эксплуатации и ремонте и характеризуется минимальными тепловыми потерями и простотой обнаружения мест аварий. Несущими конструкциями для труб являются отдельно стоящие опоры или мачты, обеспечивающие расположение труб на нужном расстоянии от земли. При низких опорах расстояние в свету (между поверхностью изоляции и землей) при ширине группы труб до 1,5 м принимается 0,35 м и не менее 0,5 м при большей ши­рине. Опоры выполняют обычно из железобетонных блоков, мачты и эста­кады - из стали и железобетона. Расстояние между опорами или мачтами при надземной прокладке труб диаметром 25-800 мм принимают равным 2-20 м. Иногда устраивают по одной или две промежуточные подвесные опоры с помощью растяжек, чтобы сократить число мачт и снизить капи­тальные вложения в тепловую сеть.

    Трассы тепловых сетей не могут быть сделаны произвольно, по субъективному желанию, они выполняются в соответствии с указаниями СНиП 41-02-2003, СНиП 3.05.03-85 и строго регламентированы .

    Современные способы прокладки и возведения тепловых сетей (рис. 6.15) классифицируют следующим образом:

    • 1. Бесканальная прокладка тепловых сетей в грунте. (Для тепловых сетей условным диаметром О у
    • 2. Совмещенная многотрубная прокладка теплопроводов в общей траншее совместно с другими коммуникациями.

    Рис. 6.15.

    • 3. Прокладка тепловых сетей в подземных непроходных каналах - раздельно или совмещенно с другими коммуникациями.
    • 4. Совмещенная прокладка теплопроводов в подземных проходных коллекторах и технических подпольях зданий.
    • 5. Надземная - воздушная прокладка теплопроводов.

    Бесканальная прокладка 1 является наиболее экономичным

    способом сооружения теплосетей, обеспечивающая меньшие объемы земляных и строительно-монтажных работ, экономию сборного железобетона, снижение трудоемкости строительства и повышение производительности труда.

    При качественных и долговечных индустриальных конструкциях теплопроводов и материалах и надлежащем выполнении монтажных и изоляционно-сварочных работ способ обеспечивает расчетную долговечность подземных коммуникаций (более 30 лет) и необходимую защиту от коррозии.

    При сооружении внутриквартальных подземных коммуникаций от котельных, ЦТП в районах нового жилищного строительства городов наиболее эффективно применяется совмещенная бесканальная прокладка нескольких сетей 2 - горячего и холодного водоснабжения и других в общей траншее. Число труб при этом может достигать до 10-12 шт. Она более экономична, чем раздельная прокладка (на 15 % по стоимости, на 25-30 % по объему земляных работ), сокращаются сроки строительства.

    Преимущественное распространение в городах получил способ строительства тепловых сетей в непроходных подземных каналах 3. Канал защищает теплопровод от механических нагрузок, обеспечивает температурные деформации его, защищает от воздействия грунтовой среды и поверхностных вод. Но такой тип прокладки весьма дорог, требует значительного расхода железобетонных конструкций (от 500 до 2000 м 3 на 1 км трассы), больших объемов земляных работ и трудовых затрат.

    Ограниченное применение получил способ совмещенной прокладки теплопроводов в тоннелях, проходных коллекторах и технических подпольях зданий 4.

    Подземную прокладку тепловых сетей допускается принимать совместно с другими инженерными сетями: в каналах - только с водопроводами, трубопроводами сжатого воздуха давлением до 1,6 МПа, мазутопроводами, с контрольными кабелями связи теплосетей, а в тоннелях - только с водопроводами диаметром до 500 мм, кабелями связи, силовыми кабелями напряжением до 10 кВ, трубопроводами сжатого воздуха давлением до 1,6 МПа и напорной канализации. Прокладка трубопроводов тепловых сетей в каналах и тоннелях с другими инженерными сетями кроме указанных не допускается.

    Таким образом, в населенных пунктах для тепловых сетей предусматривается, как правило, подземная прокладка (бесканальная, в каналах или в городских и внутриквартальных тоннелях совместно с другими инженерными сетями), прокладка тепловых сетей по насыпям автомобильных дорог не допускается. Под городскими проездами и площадями с усовершенствованным покрытием, а также при пересечении крупных автомагистралей их следует прокладывать в тоннелях или футлярах.

    При обосновании допускается надземная прокладка тепловых сетей 5 на низких или высоких железобетонных опорах, в отдельных случаях - на кронштейнах вдоль стен зданий.

    При выборе трассы теплосетей разрешается пересечение водяными сетями диаметром 300 мм и менее жилых и общественных зданий при условии прокладки сетей в технических подпольях, технических коридорах и тоннелях (высотой не менее 1,8 м) с устройством дренирующего колодца в нижней точке на выходе из здания. Пересечение тепловыми сетями детских дошкольных, школьных и лечебно-профилактических учреждений не допускается. На рис. 6.16 и 6.17 показаны различные виды прокладок тепловых сетей .

    Рис. 6.16.

    На рис. 6.17 показано надземное расположение теплопроводов промышленного предприятия на низких опорах. На переднем плане хорошо видны вертикально-расположенные и-образные компенсаторы температурного удлинения трубопроводов, рядом слева расположен «холодный» трубопровод.

    В последние годы надземная прокладка тепловых сетей получает все большее распространение, особенно при реконструкции и капитальных ремонтах существующих подземных сооружений. Их часто выносят на поверхность земли в совершенно неожиданных местах - во дворах жилых микрорайонов, на спортивных площадках, в парковых зонах, на внутриквартальных проездах и т.д., нисколько не считаясь с интересами жителей, учреждений и организаций. При попустительстве архитектурных и административных инспекций «украшают» теплопроводами окружающие пространства. Организации - владельцы теплосетей часто мотивируют такие решения как временный выход из положения.

    Трассы тепловых сетей не могут быть сделаны произвольно, по субъективному желанию, они выполняются в соответствии с указаниями СНиП 41-02-2003, СНиП 3.05.03-85 и строго регламентированы

    Современные способы прокладки и возведения тепловых сетей (рис. 1) классифицируют следующим образом:

    1. Бесканальная прокладка тепловых сетей в грунте. Для тепловых сетей условным диаметром D y ≤ 400 мм следует предусматривать преимущественно бесканальную прокладку.

    2. Совмещенная многотрубная прокладка теплопроводов в общей траншее совместно с другими коммуникациями.

    3. Прокладка тепловых сетей в подземных непроходных каналах - раздельно или совмещено с другими коммуникациями.

    4. Совмещенная прокладка теплопроводов в подземных проходных коллекторах и технических подпольях зданий.

    5. Надземная - воздушная прокладка теплопроводов.

    Рисунок 1.

    Бесканальная прокладка 1 является наиболее экономичным способом сооружения теплосетей, обеспечивающая меньшие объемы земляных и строительно-монтажных работ, экономию сборного железобетона, снижение трудоемкости строительства и повышение производительности труда.

    При качественных и долговечных индустриальных конструкциях теплопроводов и материалах и надлежащем выполнении монтажных и изоляционно-сварочных работ способ обеспечивает расчетную долговечность подземных коммуникаций (более 30 лет) и необходимую защиту от коррозии.

    При сооружении внутри квартальных подземных коммуникаций от котельных, ЦТП в районах нового жилищного строительства городов наиболее эффективно применяется совмещенная бесканальная прокладка нескольких сетей 2 - горячего и холодного водоснабжения и других в общей траншее. Число труб при этом может достигать до 10-12 шт. Она более экономична, чем раздельная прокладка (на 15 % по стоимости, на 25-30 % по объему земляных работ), сокращаются сроки строительства.

    Преимущественное распространение в городах получил способ строительства тепловых сетей в непроходных подземных каналах 3. Канал защищает теплопровод от механических нагрузок, обеспечивает температурные деформации его, защищает от воздействия грунтовой среды и поверхностных вод. Но такой тип прокладки весьма дорог, требует значительного расхода железобетонных конструкций (от 500 до 2000 м 3 на 1 км трассы), больших объемов земляных работ и трудовых затрат.

    Ограниченное применение получил способ совмещенной прокладки теплопроводов в тоннелях, проходных коллекторах и технических подпольях зданий 4.

    Подземную прокладку тепловых сетей допускается принимать совместно с другими инженерными сетями: в каналах - только с водопроводами, трубопроводами сжатого воздуха давлением до 1,6 МПа, мазутопроводами, с контрольными кабелями связи теплосетей, а в тоннелях - только с водопроводами диаметром до 500 мм, кабелями связи, силовыми кабелями напряжением до 10 кВ, трубопроводами сжатого воздуха давлением до 1,6 МПа и напорной канализации. Прокладка трубопроводов тепловых сетей в каналах и тоннелях с другими инженерными сетями кроме указанных не допускается.

    Таким образом, в населенных пунктах для тепловых сетей предусматривается, как правило, подземная прокладка (бесканальная, в каналах или в городских и внутриквартальных тоннелях совместно с другими инженерными сетями), прокладка тепловых сетей по насыпям автомобильных дорог не допускается. Под городскими проездами и площадями с усовершенствованным покрытием, а также при пересечении крупных автомагистралей их следует прокладывать в тоннелях или футлярах.

    При обосновании допускается надземная прокладка тепловых сетей 5 на низких или высоких железобетонных опорах, в отдельных случаях - на кронштейнах вдоль стен зданий.

    При выборе трассы теплосетей разрешается пересечение водяными сетями диаметром 300 мм и менее жилых и общественных зданий при условии прокладки сетей в технических подпольях, технических коридорах и тоннелях (высотой не менее 1,8 м) с устройством дренирующего колодца в нижней точке на выходе из здания. Пересечение тепловыми сетями детских дошкольных, школьных и лечебно-профилактических учреждений не допускается.

    В последние годы надземная прокладка тепловых сетей получает все большее распространение, особенно при реконструкции и капитальных ремонтах существующих подземных сооружений. Их часто выносят на поверхность земли в совершенно неожиданных местах - во дворах жилых микрорайонов, на спортивных площадках, в парковых зонах, на внутриквартальных проездах и т.д., нисколько не считаясь с интересами жителей, учреждений и организаций. При попустительстве архитектурных и административных инспекций «украшают» теплопроводами окружающие пространства. Организации - владельцы теплосетей часто мотивируют такие решения как временный выход из положения.

    Наиболее распространенными конструк­циями теплопроводов являются подземные .

    Подземные теплопроводы . Все конст­рукции подземных теплопроводов можно разделить на две группы: канальные и бесканальные .

    В канальных теплопроводах изоляцион­ная конструкция разгружена от внешних на­грузок грунта стенками канала.

    В бесканальных теплопроводах изоля­ционная конструкция испытывает нагруз­ку грунта.

    Каналы сооружаются проходными и не­проходными .

    В настоящее время большинство ка­налов для теплопроводов сооружается из сборных железобетонных элементов, за­ранее изготовленных на заводах или специ­альных полигонах. Сборка этих элементов на трассе выполняется при помощи транспортно-подъемных механизмов. Устройст­во в грунте траншей для сооружения под­земных теплопроводов, как правило, осу­ществляется экскаваторами. Все это позво­ляет значительно ускорить строительство тепловых сетей и снизить их стоимость.

    Из всех подземных теплопроводов наи­более надежными, зато и наиболее дороги­ми по начальным затратам являются тепло­проводы в проходных каналах .

    Основное преимущество проходных ка­налов - постоянный доступ к трубопрово­дам. Проходные каналы позволяют заме­нять и добавлять трубопроводы, проводить ревизию, ремонт и ликвидацию аварий на трубопроводах без разрушения дорож­ных покрытий и разрытия мостовых. Про­ходные каналы применяются обычно на вы­водах от теплоэлектроцентралей и на ос­новных магистралях промплощадок круп­ных предприятий. В последнем случае в об­щем проходном канале прокладываются все трубопроводы производственного назначе­ния (паропроводы, водоводы, трубопрово­ды сжатого воздуха).

    В тех случаях, когда количество парал­лельно прокладываемых трубопроводов не­велико (два-четыре), но постоянный доступ к ним необходим, например при пересече­нии автомагистралей с усовершенствован­ными покрытиями, теплопроводы сооружа­ются в полупроходных каналах . Габаритные размеры полупроходных каналов выбирают из условия прохода по ним человека в полусогнутом состоянии.



    Большинство теплопроводов прокла­дывается в непроходных каналах или бесканально .

    Теплопроводы в непроходных кана­лах. Для надежной и долговеч­ной работы теплопровода необходима за­щита канала от поступления в него грунто­вых или поверхностных вод. Как правило, нижнее основание канала должно быть вы­ше максимального уровня грунтовых вод.

    Для защиты от поверхностных вод на­ружная поверхность канала (стены и пере­крытия) покрывается оклеенной гидроизо­ляцией из битумных материалов.

    При прокладке в непроходных каналах габариты каналов выбираются из условия размещения в них трубопроводов и выполнения всех работ по монтажу и ремонту только при вскрытии канала с поверхности земли. Проход обслуживающего персонала в канале без снятия перекрытия невозможен.

    Типовые железобетонные непроходные каналы в серии 3.006-2, лобковые типов КЛ и КЛп, показаны на рис. (8.4).

    Типоразмеры каналов выбираются по диаметрам трубопроводов и допустимым расстояниям в свету между трубопроводами и строительными конструкциями (прил. 23).

    При этом трубопроводы укладываются на скользящих опорах, которые опираются на железобетонные подушки, устанавливаемые на дне канала. Рекомендуемые способы размещения трубопроводов приведены на рис. 8.5. и в прил…

    При бесканальной прокладке трубопроводы укладываются непосредственно в грунт без канала, а тепловая изоляция или непосредственно соприкасается с грунтом, или имеет защиту в виде какой – либо оболочки.

    Рис. 8.5. Размещение в непроходных каналах трубопроводов:

    а – двух; б – нескольких

    Бесканальная прокладка является одним из самых простых и дешевых, выполняется с наименьшим расходом строительных материалов и в минимальные сроки (конкурируют с надземной прокладкой), но не менее удобна, чем надземная, так как требует разрытия грунта для осмотра и ремонта сетей. Основной недостаток бесканальной прокладки – трудность защиты изоляции от проникновения в нее влаги. Она требует применения специальных гидрофобных материалов и тщательного производства строительных работ. В настоящее время разработаны следующие виды бесканальной прокладки: трубопроводы в моно­литных оболочках, литые (сборно-литые) и засыпные (рис. 8.6) и в за­висимости от характера восприятия весовых нагрузок: разгруженные и неразгруженные .

    Рис. 8.6. Типы бесканальных теплопроводов

    а - в сборной и монолитной оболочке; б - литые и сборно-литые; в - засыпные

    К разгруженным относятся конструкции, в которых теплоизоляци­онное покрытие обладает достаточной механической прочностью и разгружает трубопроводы от внешних нагрузок (веса грунта, веса проходящего на поверхности транспорта и т. п.). К ним относятся ли­тые (сборно-литые) и монолитные оболочки.

    В неразгруженных конструкциях внешние механические нагрузки передаются через тепловую изоляцию непосредственно на трубопро­вод. К ним относятся засыпные теплопроводы.

    При бесканальной прокладке особенно большое значение имеет за­щита теплопроводов от воздействий грунтовых и поверхностных вод и блуждающих токов. С этой целью применяют антикоррозионные по­крытия поверхности труб, влагозащитные оболочки и электрохимиче­скую защиту, а также устраивают попутный дренаж с песчаной и гравийной подсыпкой.

    На рис. 8.7 показан разрез двухтрубного бесканального теплопровода в монолитных оболочках.

    Надземные теплопроводы . Надземные теплопроводы обычно укладываются на от­дельно стоящих опорах (низких или высо­ких) (рис. 8.8), на вантовых конструкциях, подвешен­ных к пилонам мачт, на эстакадах (рис. 8.9). В СССР были разработаны типовые конструкции надземных теплопроводов на отдельно стоящих высоких и низких железобетонных опорах (серии ИС-01-06 и ИС-01-07)

    Рис. 8.7. Общий вид двухтрубного бесканального теплопровода в монолитных оболочках

    1 - подающий теплопровод; 2 - обратный тепло­провод; 3 - гравийный фильтр; 4 - песчаный фильтр; 5 - дренажная труба; 6 - бетонное основа­ние (при слабых грунтах)

    При прокладке теплопроводов на низких опорах расстояние между нижней образующей изо­ляционной оболочки трубопровода и по­верхностью земли принимается не менее 0,35 м при ширине группы труб до 1,5 м и не менее 0,5 м при ширине группы труб бо­лее 1,5 м.

    Рис. 8.8. Надземный теплопровод на отдельно стоящих опорах (мачтах)

    Материалы для мачт выбираются в зави­симости от типа и назначения теплопрово­да. Наиболее подходящим материалом для мачт стационарных конструкций является железобетон. В местах установки арматуры трубопроводов необходимо предусмотреть приспособление для удобного подъема об­служивающего персонала и безопасного об­служивания арматуры. В этих местах обыч­но устраиваются площадки с ограждениями и постоянными лестницами.

    Рис. 8.9. Прокладка теплопровода по эстакаде

    На подземных теплопроводах оборудование, требующее обслужи­вания (задвижки, сальниковые компенсаторы, дренажные устройства, спускники, воздушники и др.), размещают в специальных камерах, а гибкие компенсаторы - в нишах. Камеры и ниши, как и каналы, со­оружают из сборных железобетонных элементов. Конструктивно каме­ры выполняют подземными или с надземными павильонами. Подзем­ные камеры устраивают при трубопроводах небольших диаметров и применении задвижек с ручным приводом. Камеры с надземными па­вильонами обеспечивают лучшее обслуживание крупногабаритного оборудования, в частности, задвижек с электро- и гидроприводами, которые устанавливают обычно при диаметрах трубопроводов 500 мм и более.

    Габаритные размеры камер вы­бирают из условия обеспечения удобства и безопасности обслужи­вания оборудования. Для входа в подземные камеры в углах по диа­гонали устраивают люки - не ме­нее двух при внутренней площади до 6 м 2 и не менее четырех при большей площади. Диаметр люка принимают не менее 0,63 м. Под каждым люком устанавливают лестницы или скобы с шагом не более 0,4 м для спуска в камеры. Днище камер выполняют с уклоном >= >= 0,02 к одному из углов (под люком), где устраивают прикрывае­мые сверху решеткой приямки для сбора воды глубиной не менее 0,3 м и размерами в плане 0,4 0,4 м. Вода из приямков отводится самотеком или при помощи насосов в водостоки либо приемные колодцы. Для защиты камер от грунтовых и поверхностных вод их наруж­ную поверхность оклеивают несколькими слоями гидроизола или металлоизола, а иногда дополнительно накладывают на внутреннюю по­верхность стен и днища цементную штукатурку. Для уменьшения ве­роятности затопления камер в периоды аварий спускные дренажи теп­лопроводов следует выводить за стены камер, особенно при установ­ке оборудования с электроприводами.



    Понравилась статья? Поделитесь ей